Polarimetric SAR Image Segmentation using CEM Algorithm
- Autores
- Fernández Michelli, Juan Ignacio; Hurtado, Martin; Areta, Javier Alberto; Muravchik, Carlos Horacio
- Año de publicación
- 2014
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we perform Synthetic Aperture Radar (SAR) polarimetric images segmentation based on the Classification-Expectation-Maximization (CEM) method, with both supervised and unsupervised initialization. In the former case, the algorithm is randomly initialized with the number of classes as the only initial information, while in the unsupervised case initialization is based on a previous classification. Real EMISAR Single-Look-Complex (SLC) data are used, with Mixing Gaussian model. Results are compared with those obtained by Wishart unsupervised classification method, which is a well-known and widely used method for radar image classification. Finally, Da-vies-Bouldin index is applied for quantitative comparison be-tween the obtained segmentations, and for studying the CEM method performance.
Fil: Fernández Michelli, Juan Ignacio. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Electrotecnia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hurtado, Martin. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Electrotecnia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Areta, Javier Alberto. Universidad Nacional de Rio Negro. Sede Andina. Departamento de Ciencias Exactas, Naturales y de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muravchik, Carlos Horacio. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Electrotecnia; Argentina - Materia
-
CEM
CLASSIFICATION
EXPECTATION MAXIMIZATION
SAR
SEGMENTATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/35841
Ver los metadatos del registro completo
id |
CONICETDig_67c4bdec81c3f27943b14ca1e1c77d97 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/35841 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Polarimetric SAR Image Segmentation using CEM AlgorithmFernández Michelli, Juan IgnacioHurtado, MartinAreta, Javier AlbertoMuravchik, Carlos HoracioCEMCLASSIFICATIONEXPECTATION MAXIMIZATIONSARSEGMENTATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this work we perform Synthetic Aperture Radar (SAR) polarimetric images segmentation based on the Classification-Expectation-Maximization (CEM) method, with both supervised and unsupervised initialization. In the former case, the algorithm is randomly initialized with the number of classes as the only initial information, while in the unsupervised case initialization is based on a previous classification. Real EMISAR Single-Look-Complex (SLC) data are used, with Mixing Gaussian model. Results are compared with those obtained by Wishart unsupervised classification method, which is a well-known and widely used method for radar image classification. Finally, Da-vies-Bouldin index is applied for quantitative comparison be-tween the obtained segmentations, and for studying the CEM method performance.Fil: Fernández Michelli, Juan Ignacio. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Electrotecnia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hurtado, Martin. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Electrotecnia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Areta, Javier Alberto. Universidad Nacional de Rio Negro. Sede Andina. Departamento de Ciencias Exactas, Naturales y de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Muravchik, Carlos Horacio. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Electrotecnia; ArgentinaInstitute of Electrical and Electronics Engineers2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/35841Fernández Michelli, Juan Ignacio; Hurtado, Martin; Areta, Javier Alberto; Muravchik, Carlos Horacio; Polarimetric SAR Image Segmentation using CEM Algorithm; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 12; 5; 8-2014; 910-9141548-0992CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/doi/10.1109/TLA.2014.6872905info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6872905/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:18:28Zoai:ri.conicet.gov.ar:11336/35841instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:18:29.059CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Polarimetric SAR Image Segmentation using CEM Algorithm |
title |
Polarimetric SAR Image Segmentation using CEM Algorithm |
spellingShingle |
Polarimetric SAR Image Segmentation using CEM Algorithm Fernández Michelli, Juan Ignacio CEM CLASSIFICATION EXPECTATION MAXIMIZATION SAR SEGMENTATION |
title_short |
Polarimetric SAR Image Segmentation using CEM Algorithm |
title_full |
Polarimetric SAR Image Segmentation using CEM Algorithm |
title_fullStr |
Polarimetric SAR Image Segmentation using CEM Algorithm |
title_full_unstemmed |
Polarimetric SAR Image Segmentation using CEM Algorithm |
title_sort |
Polarimetric SAR Image Segmentation using CEM Algorithm |
dc.creator.none.fl_str_mv |
Fernández Michelli, Juan Ignacio Hurtado, Martin Areta, Javier Alberto Muravchik, Carlos Horacio |
author |
Fernández Michelli, Juan Ignacio |
author_facet |
Fernández Michelli, Juan Ignacio Hurtado, Martin Areta, Javier Alberto Muravchik, Carlos Horacio |
author_role |
author |
author2 |
Hurtado, Martin Areta, Javier Alberto Muravchik, Carlos Horacio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CEM CLASSIFICATION EXPECTATION MAXIMIZATION SAR SEGMENTATION |
topic |
CEM CLASSIFICATION EXPECTATION MAXIMIZATION SAR SEGMENTATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work we perform Synthetic Aperture Radar (SAR) polarimetric images segmentation based on the Classification-Expectation-Maximization (CEM) method, with both supervised and unsupervised initialization. In the former case, the algorithm is randomly initialized with the number of classes as the only initial information, while in the unsupervised case initialization is based on a previous classification. Real EMISAR Single-Look-Complex (SLC) data are used, with Mixing Gaussian model. Results are compared with those obtained by Wishart unsupervised classification method, which is a well-known and widely used method for radar image classification. Finally, Da-vies-Bouldin index is applied for quantitative comparison be-tween the obtained segmentations, and for studying the CEM method performance. Fil: Fernández Michelli, Juan Ignacio. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Electrotecnia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Hurtado, Martin. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Electrotecnia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Areta, Javier Alberto. Universidad Nacional de Rio Negro. Sede Andina. Departamento de Ciencias Exactas, Naturales y de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Muravchik, Carlos Horacio. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Electrotecnia; Argentina |
description |
In this work we perform Synthetic Aperture Radar (SAR) polarimetric images segmentation based on the Classification-Expectation-Maximization (CEM) method, with both supervised and unsupervised initialization. In the former case, the algorithm is randomly initialized with the number of classes as the only initial information, while in the unsupervised case initialization is based on a previous classification. Real EMISAR Single-Look-Complex (SLC) data are used, with Mixing Gaussian model. Results are compared with those obtained by Wishart unsupervised classification method, which is a well-known and widely used method for radar image classification. Finally, Da-vies-Bouldin index is applied for quantitative comparison be-tween the obtained segmentations, and for studying the CEM method performance. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/35841 Fernández Michelli, Juan Ignacio; Hurtado, Martin; Areta, Javier Alberto; Muravchik, Carlos Horacio; Polarimetric SAR Image Segmentation using CEM Algorithm; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 12; 5; 8-2014; 910-914 1548-0992 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/35841 |
identifier_str_mv |
Fernández Michelli, Juan Ignacio; Hurtado, Martin; Areta, Javier Alberto; Muravchik, Carlos Horacio; Polarimetric SAR Image Segmentation using CEM Algorithm; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 12; 5; 8-2014; 910-914 1548-0992 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1109/TLA.2014.6872905 info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6872905/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981010407424000 |
score |
12.993085 |