Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion
- Autores
- Lapaz Olveira, Adrián Marcelo; Sainz Rozas, Hernan Rene; Castro Franco, Mauricio; Carciochi, Walter Daniel; Nieto, Luciana; Balzarini, Monica Graciela; Ciampitti, Ignacio Antonio; Reussi Calvo, Nahuel Ignacio
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Corn (Zea mays L.) nitrogen (N) management requires monitoring plant N concentration (Nc) with remote sensing tools to improve N use, increasing both profitability and sustainability. This work aims to predict the corn Nc during the growing cycle from Sentinel-2 and Sentinel-1 (C-SAR) sensor data fusion. Eleven experiments using five fertilizer N rates (0, 60, 120, 180, and 240 kg N ha−1) were conducted in the Pampas region of Argentina. Plant samples were collected at four stages of vegetative and reproductive periods. Vegetation indices were calculated with new combinations of spectral bands, C-SAR backscatters, and sensor data fusion derived from Sentinel-1 and Sentinel-2. Predictive models of Nc with the best fit (R2 = 0.91) were calibrated with spectral band combinations and sensor data fusion in six experiments. During validation of the models in five experiments, sensor data fusion predicted corn Nc with lower error (MAPE: 14%, RMSE: 0.31 %Nc) than spectral band combination (MAPE: 20%, RMSE: 0.44 %Nc). The red-edge (704, 740, 740 nm), short-wave infrared (1375 nm) bands, and VV backscatter were all necessary to monitor corn Nc. Thus, satellite remote sensing via sensor data fusion is a critical data source for predicting changes in plant N status.
Fil: Lapaz Olveira, Adrián Marcelo. Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica; Argentina. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina
Fil: Sainz Rozas, Hernan Rene. Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Castro Franco, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Los Llanos; Colombia
Fil: Carciochi, Walter Daniel. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina
Fil: Nieto, Luciana. Kansas State University; Estados Unidos
Fil: Balzarini, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Matemáticas. Cátedra de Estadística y Biometría; Argentina
Fil: Ciampitti, Ignacio Antonio. Kansas State University; Estados Unidos
Fil: Reussi Calvo, Nahuel Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata; Argentina - Materia
-
C-SAR BACKSCATTER
SENTINEL-1
SENTINEL-2
SPECTRAL BANDS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/224122
Ver los metadatos del registro completo
id |
CONICETDig_116efdcd58508729dbd0b65cbdd2c25f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/224122 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data FusionLapaz Olveira, Adrián MarceloSainz Rozas, Hernan ReneCastro Franco, MauricioCarciochi, Walter DanielNieto, LucianaBalzarini, Monica GracielaCiampitti, Ignacio AntonioReussi Calvo, Nahuel IgnacioC-SAR BACKSCATTERSENTINEL-1SENTINEL-2SPECTRAL BANDShttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Corn (Zea mays L.) nitrogen (N) management requires monitoring plant N concentration (Nc) with remote sensing tools to improve N use, increasing both profitability and sustainability. This work aims to predict the corn Nc during the growing cycle from Sentinel-2 and Sentinel-1 (C-SAR) sensor data fusion. Eleven experiments using five fertilizer N rates (0, 60, 120, 180, and 240 kg N ha−1) were conducted in the Pampas region of Argentina. Plant samples were collected at four stages of vegetative and reproductive periods. Vegetation indices were calculated with new combinations of spectral bands, C-SAR backscatters, and sensor data fusion derived from Sentinel-1 and Sentinel-2. Predictive models of Nc with the best fit (R2 = 0.91) were calibrated with spectral band combinations and sensor data fusion in six experiments. During validation of the models in five experiments, sensor data fusion predicted corn Nc with lower error (MAPE: 14%, RMSE: 0.31 %Nc) than spectral band combination (MAPE: 20%, RMSE: 0.44 %Nc). The red-edge (704, 740, 740 nm), short-wave infrared (1375 nm) bands, and VV backscatter were all necessary to monitor corn Nc. Thus, satellite remote sensing via sensor data fusion is a critical data source for predicting changes in plant N status.Fil: Lapaz Olveira, Adrián Marcelo. Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica; Argentina. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: Sainz Rozas, Hernan Rene. Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Castro Franco, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Los Llanos; ColombiaFil: Carciochi, Walter Daniel. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: Nieto, Luciana. Kansas State University; Estados UnidosFil: Balzarini, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Matemáticas. Cátedra de Estadística y Biometría; ArgentinaFil: Ciampitti, Ignacio Antonio. Kansas State University; Estados UnidosFil: Reussi Calvo, Nahuel Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata; ArgentinaMDPI2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/224122Lapaz Olveira, Adrián Marcelo; Sainz Rozas, Hernan Rene; Castro Franco, Mauricio; Carciochi, Walter Daniel; Nieto, Luciana; et al.; Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion; MDPI; Remote Sensing; 15; 3; 2-2023; 1-172072-4292CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/15/3/824info:eu-repo/semantics/altIdentifier/doi/10.3390/rs15030824info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:25Zoai:ri.conicet.gov.ar:11336/224122instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:26.267CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion |
title |
Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion |
spellingShingle |
Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion Lapaz Olveira, Adrián Marcelo C-SAR BACKSCATTER SENTINEL-1 SENTINEL-2 SPECTRAL BANDS |
title_short |
Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion |
title_full |
Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion |
title_fullStr |
Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion |
title_full_unstemmed |
Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion |
title_sort |
Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion |
dc.creator.none.fl_str_mv |
Lapaz Olveira, Adrián Marcelo Sainz Rozas, Hernan Rene Castro Franco, Mauricio Carciochi, Walter Daniel Nieto, Luciana Balzarini, Monica Graciela Ciampitti, Ignacio Antonio Reussi Calvo, Nahuel Ignacio |
author |
Lapaz Olveira, Adrián Marcelo |
author_facet |
Lapaz Olveira, Adrián Marcelo Sainz Rozas, Hernan Rene Castro Franco, Mauricio Carciochi, Walter Daniel Nieto, Luciana Balzarini, Monica Graciela Ciampitti, Ignacio Antonio Reussi Calvo, Nahuel Ignacio |
author_role |
author |
author2 |
Sainz Rozas, Hernan Rene Castro Franco, Mauricio Carciochi, Walter Daniel Nieto, Luciana Balzarini, Monica Graciela Ciampitti, Ignacio Antonio Reussi Calvo, Nahuel Ignacio |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
C-SAR BACKSCATTER SENTINEL-1 SENTINEL-2 SPECTRAL BANDS |
topic |
C-SAR BACKSCATTER SENTINEL-1 SENTINEL-2 SPECTRAL BANDS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Corn (Zea mays L.) nitrogen (N) management requires monitoring plant N concentration (Nc) with remote sensing tools to improve N use, increasing both profitability and sustainability. This work aims to predict the corn Nc during the growing cycle from Sentinel-2 and Sentinel-1 (C-SAR) sensor data fusion. Eleven experiments using five fertilizer N rates (0, 60, 120, 180, and 240 kg N ha−1) were conducted in the Pampas region of Argentina. Plant samples were collected at four stages of vegetative and reproductive periods. Vegetation indices were calculated with new combinations of spectral bands, C-SAR backscatters, and sensor data fusion derived from Sentinel-1 and Sentinel-2. Predictive models of Nc with the best fit (R2 = 0.91) were calibrated with spectral band combinations and sensor data fusion in six experiments. During validation of the models in five experiments, sensor data fusion predicted corn Nc with lower error (MAPE: 14%, RMSE: 0.31 %Nc) than spectral band combination (MAPE: 20%, RMSE: 0.44 %Nc). The red-edge (704, 740, 740 nm), short-wave infrared (1375 nm) bands, and VV backscatter were all necessary to monitor corn Nc. Thus, satellite remote sensing via sensor data fusion is a critical data source for predicting changes in plant N status. Fil: Lapaz Olveira, Adrián Marcelo. Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica; Argentina. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina Fil: Sainz Rozas, Hernan Rene. Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina Fil: Castro Franco, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Los Llanos; Colombia Fil: Carciochi, Walter Daniel. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina Fil: Nieto, Luciana. Kansas State University; Estados Unidos Fil: Balzarini, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Matemáticas. Cátedra de Estadística y Biometría; Argentina Fil: Ciampitti, Ignacio Antonio. Kansas State University; Estados Unidos Fil: Reussi Calvo, Nahuel Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata; Argentina |
description |
Corn (Zea mays L.) nitrogen (N) management requires monitoring plant N concentration (Nc) with remote sensing tools to improve N use, increasing both profitability and sustainability. This work aims to predict the corn Nc during the growing cycle from Sentinel-2 and Sentinel-1 (C-SAR) sensor data fusion. Eleven experiments using five fertilizer N rates (0, 60, 120, 180, and 240 kg N ha−1) were conducted in the Pampas region of Argentina. Plant samples were collected at four stages of vegetative and reproductive periods. Vegetation indices were calculated with new combinations of spectral bands, C-SAR backscatters, and sensor data fusion derived from Sentinel-1 and Sentinel-2. Predictive models of Nc with the best fit (R2 = 0.91) were calibrated with spectral band combinations and sensor data fusion in six experiments. During validation of the models in five experiments, sensor data fusion predicted corn Nc with lower error (MAPE: 14%, RMSE: 0.31 %Nc) than spectral band combination (MAPE: 20%, RMSE: 0.44 %Nc). The red-edge (704, 740, 740 nm), short-wave infrared (1375 nm) bands, and VV backscatter were all necessary to monitor corn Nc. Thus, satellite remote sensing via sensor data fusion is a critical data source for predicting changes in plant N status. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/224122 Lapaz Olveira, Adrián Marcelo; Sainz Rozas, Hernan Rene; Castro Franco, Mauricio; Carciochi, Walter Daniel; Nieto, Luciana; et al.; Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion; MDPI; Remote Sensing; 15; 3; 2-2023; 1-17 2072-4292 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/224122 |
identifier_str_mv |
Lapaz Olveira, Adrián Marcelo; Sainz Rozas, Hernan Rene; Castro Franco, Mauricio; Carciochi, Walter Daniel; Nieto, Luciana; et al.; Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion; MDPI; Remote Sensing; 15; 3; 2-2023; 1-17 2072-4292 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/15/3/824 info:eu-repo/semantics/altIdentifier/doi/10.3390/rs15030824 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613065155280896 |
score |
13.070432 |