Two weighted inequalities for convolution maximal operators

Autores
Bernardis, Ana Lucia; Martín Reyes, Francisco Javier
Año de publicación
2002
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let ψ: ℝ → [0, ∞) an integrable function such that ψχ(-∞,0) = 0 and ψ is decreasing in (0, ∞). Let τhf(x) = f(x - h), with h ∈ ℝ \ {0} and f R(x) = 1/Rf(x/R), with R > 0. In this paper we characterize the pair of weights (u, v) such that the operators Mτhψf(x) = supR>0 |f| * [τhψ]R(x) are of weak type (p, p) with respect to (u, v), 1 < p < ∞.
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España
Materia
Two weighted inequalities
Convolution maximal operators
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100610

id CONICETDig_a59dd8c35a353dc1c2b1475bd372c42e
oai_identifier_str oai:ri.conicet.gov.ar:11336/100610
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Two weighted inequalities for convolution maximal operatorsBernardis, Ana LuciaMartín Reyes, Francisco JavierTwo weighted inequalitiesConvolution maximal operatorshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let ψ: ℝ → [0, ∞) an integrable function such that ψχ(-∞,0) = 0 and ψ is decreasing in (0, ∞). Let τhf(x) = f(x - h), with h ∈ ℝ \ {0} and f R(x) = 1/Rf(x/R), with R > 0. In this paper we characterize the pair of weights (u, v) such that the operators Mτhψf(x) = supR>0 |f| * [τhψ]R(x) are of weak type (p, p) with respect to (u, v), 1 < p < ∞.Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Martín Reyes, Francisco Javier. Universidad de Málaga; EspañaUniversitat Autònoma de Barcelona2002-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100610Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Two weighted inequalities for convolution maximal operators; Universitat Autònoma de Barcelona; Publicacions Matematiques; 46; 1; 12-2002; 119-1380214-1493CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5565/PUBLMAT_46102_07info:eu-repo/semantics/altIdentifier/url/http://mat.uab.es/pubmat/fitxers/download/FileType:pdf/FolderName:v46(1)/FileName:46102_07.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:04:26Zoai:ri.conicet.gov.ar:11336/100610instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:04:26.245CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Two weighted inequalities for convolution maximal operators
title Two weighted inequalities for convolution maximal operators
spellingShingle Two weighted inequalities for convolution maximal operators
Bernardis, Ana Lucia
Two weighted inequalities
Convolution maximal operators
title_short Two weighted inequalities for convolution maximal operators
title_full Two weighted inequalities for convolution maximal operators
title_fullStr Two weighted inequalities for convolution maximal operators
title_full_unstemmed Two weighted inequalities for convolution maximal operators
title_sort Two weighted inequalities for convolution maximal operators
dc.creator.none.fl_str_mv Bernardis, Ana Lucia
Martín Reyes, Francisco Javier
author Bernardis, Ana Lucia
author_facet Bernardis, Ana Lucia
Martín Reyes, Francisco Javier
author_role author
author2 Martín Reyes, Francisco Javier
author2_role author
dc.subject.none.fl_str_mv Two weighted inequalities
Convolution maximal operators
topic Two weighted inequalities
Convolution maximal operators
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let ψ: ℝ → [0, ∞) an integrable function such that ψχ(-∞,0) = 0 and ψ is decreasing in (0, ∞). Let τhf(x) = f(x - h), with h ∈ ℝ \ {0} and f R(x) = 1/Rf(x/R), with R > 0. In this paper we characterize the pair of weights (u, v) such that the operators Mτhψf(x) = supR>0 |f| * [τhψ]R(x) are of weak type (p, p) with respect to (u, v), 1 < p < ∞.
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España
description Let ψ: ℝ → [0, ∞) an integrable function such that ψχ(-∞,0) = 0 and ψ is decreasing in (0, ∞). Let τhf(x) = f(x - h), with h ∈ ℝ \ {0} and f R(x) = 1/Rf(x/R), with R > 0. In this paper we characterize the pair of weights (u, v) such that the operators Mτhψf(x) = supR>0 |f| * [τhψ]R(x) are of weak type (p, p) with respect to (u, v), 1 < p < ∞.
publishDate 2002
dc.date.none.fl_str_mv 2002-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100610
Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Two weighted inequalities for convolution maximal operators; Universitat Autònoma de Barcelona; Publicacions Matematiques; 46; 1; 12-2002; 119-138
0214-1493
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100610
identifier_str_mv Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Two weighted inequalities for convolution maximal operators; Universitat Autònoma de Barcelona; Publicacions Matematiques; 46; 1; 12-2002; 119-138
0214-1493
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.5565/PUBLMAT_46102_07
info:eu-repo/semantics/altIdentifier/url/http://mat.uab.es/pubmat/fitxers/download/FileType:pdf/FolderName:v46(1)/FileName:46102_07.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universitat Autònoma de Barcelona
publisher.none.fl_str_mv Universitat Autònoma de Barcelona
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980147665305600
score 12.993085