Two weighted inequalities for convolution maximal operators
- Autores
- Bernardis, Ana Lucia; Martín Reyes, Francisco Javier
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let ψ: ℝ → [0, ∞) an integrable function such that ψχ(-∞,0) = 0 and ψ is decreasing in (0, ∞). Let τhf(x) = f(x - h), with h ∈ ℝ \ {0} and f R(x) = 1/Rf(x/R), with R > 0. In this paper we characterize the pair of weights (u, v) such that the operators Mτhψf(x) = supR>0 |f| * [τhψ]R(x) are of weak type (p, p) with respect to (u, v), 1 < p < ∞.
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España - Materia
-
Two weighted inequalities
Convolution maximal operators - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100610
Ver los metadatos del registro completo
id |
CONICETDig_a59dd8c35a353dc1c2b1475bd372c42e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100610 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Two weighted inequalities for convolution maximal operatorsBernardis, Ana LuciaMartín Reyes, Francisco JavierTwo weighted inequalitiesConvolution maximal operatorshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let ψ: ℝ → [0, ∞) an integrable function such that ψχ(-∞,0) = 0 and ψ is decreasing in (0, ∞). Let τhf(x) = f(x - h), with h ∈ ℝ \ {0} and f R(x) = 1/Rf(x/R), with R > 0. In this paper we characterize the pair of weights (u, v) such that the operators Mτhψf(x) = supR>0 |f| * [τhψ]R(x) are of weak type (p, p) with respect to (u, v), 1 < p < ∞.Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Martín Reyes, Francisco Javier. Universidad de Málaga; EspañaUniversitat Autònoma de Barcelona2002-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100610Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Two weighted inequalities for convolution maximal operators; Universitat Autònoma de Barcelona; Publicacions Matematiques; 46; 1; 12-2002; 119-1380214-1493CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5565/PUBLMAT_46102_07info:eu-repo/semantics/altIdentifier/url/http://mat.uab.es/pubmat/fitxers/download/FileType:pdf/FolderName:v46(1)/FileName:46102_07.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:04:26Zoai:ri.conicet.gov.ar:11336/100610instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:04:26.245CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Two weighted inequalities for convolution maximal operators |
title |
Two weighted inequalities for convolution maximal operators |
spellingShingle |
Two weighted inequalities for convolution maximal operators Bernardis, Ana Lucia Two weighted inequalities Convolution maximal operators |
title_short |
Two weighted inequalities for convolution maximal operators |
title_full |
Two weighted inequalities for convolution maximal operators |
title_fullStr |
Two weighted inequalities for convolution maximal operators |
title_full_unstemmed |
Two weighted inequalities for convolution maximal operators |
title_sort |
Two weighted inequalities for convolution maximal operators |
dc.creator.none.fl_str_mv |
Bernardis, Ana Lucia Martín Reyes, Francisco Javier |
author |
Bernardis, Ana Lucia |
author_facet |
Bernardis, Ana Lucia Martín Reyes, Francisco Javier |
author_role |
author |
author2 |
Martín Reyes, Francisco Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
Two weighted inequalities Convolution maximal operators |
topic |
Two weighted inequalities Convolution maximal operators |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let ψ: ℝ → [0, ∞) an integrable function such that ψχ(-∞,0) = 0 and ψ is decreasing in (0, ∞). Let τhf(x) = f(x - h), with h ∈ ℝ \ {0} and f R(x) = 1/Rf(x/R), with R > 0. In this paper we characterize the pair of weights (u, v) such that the operators Mτhψf(x) = supR>0 |f| * [τhψ]R(x) are of weak type (p, p) with respect to (u, v), 1 < p < ∞. Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España |
description |
Let ψ: ℝ → [0, ∞) an integrable function such that ψχ(-∞,0) = 0 and ψ is decreasing in (0, ∞). Let τhf(x) = f(x - h), with h ∈ ℝ \ {0} and f R(x) = 1/Rf(x/R), with R > 0. In this paper we characterize the pair of weights (u, v) such that the operators Mτhψf(x) = supR>0 |f| * [τhψ]R(x) are of weak type (p, p) with respect to (u, v), 1 < p < ∞. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100610 Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Two weighted inequalities for convolution maximal operators; Universitat Autònoma de Barcelona; Publicacions Matematiques; 46; 1; 12-2002; 119-138 0214-1493 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100610 |
identifier_str_mv |
Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Two weighted inequalities for convolution maximal operators; Universitat Autònoma de Barcelona; Publicacions Matematiques; 46; 1; 12-2002; 119-138 0214-1493 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.5565/PUBLMAT_46102_07 info:eu-repo/semantics/altIdentifier/url/http://mat.uab.es/pubmat/fitxers/download/FileType:pdf/FolderName:v46(1)/FileName:46102_07.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universitat Autònoma de Barcelona |
publisher.none.fl_str_mv |
Universitat Autònoma de Barcelona |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980147665305600 |
score |
12.993085 |