Atomic decompositions for tensor products and polynomial spaces

Autores
Carando, D.; Lassalle, S.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the existence of atomic decompositions for tensor products of Banach spaces and spaces of homogeneous polynomials. If a Banach space X admits an atomic decomposition of a certain kind, we show that the symmetrized tensor product of the elements of the atomic decomposition provides an atomic decomposition for the symmetric tensor product ⊗s, μ n X, for any symmetric tensor norm μ. In addition, the reciprocal statement is investigated and analogous consequences for the full tensor product are obtained. Finally we apply the previous results to establish the existence of monomial atomic decompositions for certain ideals of polynomials on X. © 2008 Elsevier Inc. All rights reserved.
Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Math. Anal. Appl. 2008;347(1):243-254
Materia
Atomic decompositions
Homogeneous polynomials
Polynomial ideals
Symmetric tensor norms
Tensor products
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0022247X_v347_n1_p243_Carando

id BDUBAFCEN_008e05ab9d5650bef1114ddb6e9663c0
oai_identifier_str paperaa:paper_0022247X_v347_n1_p243_Carando
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Atomic decompositions for tensor products and polynomial spacesCarando, D.Lassalle, S.Atomic decompositionsHomogeneous polynomialsPolynomial idealsSymmetric tensor normsTensor productsWe study the existence of atomic decompositions for tensor products of Banach spaces and spaces of homogeneous polynomials. If a Banach space X admits an atomic decomposition of a certain kind, we show that the symmetrized tensor product of the elements of the atomic decomposition provides an atomic decomposition for the symmetric tensor product ⊗s, μ n X, for any symmetric tensor norm μ. In addition, the reciprocal statement is investigated and analogous consequences for the full tensor product are obtained. Finally we apply the previous results to establish the existence of monomial atomic decompositions for certain ideals of polynomials on X. © 2008 Elsevier Inc. All rights reserved.Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v347_n1_p243_CarandoJ. Math. Anal. Appl. 2008;347(1):243-254reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:55Zpaperaa:paper_0022247X_v347_n1_p243_CarandoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:56.203Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Atomic decompositions for tensor products and polynomial spaces
title Atomic decompositions for tensor products and polynomial spaces
spellingShingle Atomic decompositions for tensor products and polynomial spaces
Carando, D.
Atomic decompositions
Homogeneous polynomials
Polynomial ideals
Symmetric tensor norms
Tensor products
title_short Atomic decompositions for tensor products and polynomial spaces
title_full Atomic decompositions for tensor products and polynomial spaces
title_fullStr Atomic decompositions for tensor products and polynomial spaces
title_full_unstemmed Atomic decompositions for tensor products and polynomial spaces
title_sort Atomic decompositions for tensor products and polynomial spaces
dc.creator.none.fl_str_mv Carando, D.
Lassalle, S.
author Carando, D.
author_facet Carando, D.
Lassalle, S.
author_role author
author2 Lassalle, S.
author2_role author
dc.subject.none.fl_str_mv Atomic decompositions
Homogeneous polynomials
Polynomial ideals
Symmetric tensor norms
Tensor products
topic Atomic decompositions
Homogeneous polynomials
Polynomial ideals
Symmetric tensor norms
Tensor products
dc.description.none.fl_txt_mv We study the existence of atomic decompositions for tensor products of Banach spaces and spaces of homogeneous polynomials. If a Banach space X admits an atomic decomposition of a certain kind, we show that the symmetrized tensor product of the elements of the atomic decomposition provides an atomic decomposition for the symmetric tensor product ⊗s, μ n X, for any symmetric tensor norm μ. In addition, the reciprocal statement is investigated and analogous consequences for the full tensor product are obtained. Finally we apply the previous results to establish the existence of monomial atomic decompositions for certain ideals of polynomials on X. © 2008 Elsevier Inc. All rights reserved.
Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We study the existence of atomic decompositions for tensor products of Banach spaces and spaces of homogeneous polynomials. If a Banach space X admits an atomic decomposition of a certain kind, we show that the symmetrized tensor product of the elements of the atomic decomposition provides an atomic decomposition for the symmetric tensor product ⊗s, μ n X, for any symmetric tensor norm μ. In addition, the reciprocal statement is investigated and analogous consequences for the full tensor product are obtained. Finally we apply the previous results to establish the existence of monomial atomic decompositions for certain ideals of polynomials on X. © 2008 Elsevier Inc. All rights reserved.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0022247X_v347_n1_p243_Carando
url http://hdl.handle.net/20.500.12110/paper_0022247X_v347_n1_p243_Carando
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Math. Anal. Appl. 2008;347(1):243-254
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618735116091392
score 13.070432