Atomic decompositions for tensor products and polynomial spaces
- Autores
- Carando, D.; Lassalle, S.
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the existence of atomic decompositions for tensor products of Banach spaces and spaces of homogeneous polynomials. If a Banach space X admits an atomic decomposition of a certain kind, we show that the symmetrized tensor product of the elements of the atomic decomposition provides an atomic decomposition for the symmetric tensor product ⊗s, μ n X, for any symmetric tensor norm μ. In addition, the reciprocal statement is investigated and analogous consequences for the full tensor product are obtained. Finally we apply the previous results to establish the existence of monomial atomic decompositions for certain ideals of polynomials on X. © 2008 Elsevier Inc. All rights reserved.
Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 2008;347(1):243-254
- Materia
-
Atomic decompositions
Homogeneous polynomials
Polynomial ideals
Symmetric tensor norms
Tensor products - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v347_n1_p243_Carando
Ver los metadatos del registro completo
id |
BDUBAFCEN_008e05ab9d5650bef1114ddb6e9663c0 |
---|---|
oai_identifier_str |
paperaa:paper_0022247X_v347_n1_p243_Carando |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Atomic decompositions for tensor products and polynomial spacesCarando, D.Lassalle, S.Atomic decompositionsHomogeneous polynomialsPolynomial idealsSymmetric tensor normsTensor productsWe study the existence of atomic decompositions for tensor products of Banach spaces and spaces of homogeneous polynomials. If a Banach space X admits an atomic decomposition of a certain kind, we show that the symmetrized tensor product of the elements of the atomic decomposition provides an atomic decomposition for the symmetric tensor product ⊗s, μ n X, for any symmetric tensor norm μ. In addition, the reciprocal statement is investigated and analogous consequences for the full tensor product are obtained. Finally we apply the previous results to establish the existence of monomial atomic decompositions for certain ideals of polynomials on X. © 2008 Elsevier Inc. All rights reserved.Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v347_n1_p243_CarandoJ. Math. Anal. Appl. 2008;347(1):243-254reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:55Zpaperaa:paper_0022247X_v347_n1_p243_CarandoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:56.203Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Atomic decompositions for tensor products and polynomial spaces |
title |
Atomic decompositions for tensor products and polynomial spaces |
spellingShingle |
Atomic decompositions for tensor products and polynomial spaces Carando, D. Atomic decompositions Homogeneous polynomials Polynomial ideals Symmetric tensor norms Tensor products |
title_short |
Atomic decompositions for tensor products and polynomial spaces |
title_full |
Atomic decompositions for tensor products and polynomial spaces |
title_fullStr |
Atomic decompositions for tensor products and polynomial spaces |
title_full_unstemmed |
Atomic decompositions for tensor products and polynomial spaces |
title_sort |
Atomic decompositions for tensor products and polynomial spaces |
dc.creator.none.fl_str_mv |
Carando, D. Lassalle, S. |
author |
Carando, D. |
author_facet |
Carando, D. Lassalle, S. |
author_role |
author |
author2 |
Lassalle, S. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Atomic decompositions Homogeneous polynomials Polynomial ideals Symmetric tensor norms Tensor products |
topic |
Atomic decompositions Homogeneous polynomials Polynomial ideals Symmetric tensor norms Tensor products |
dc.description.none.fl_txt_mv |
We study the existence of atomic decompositions for tensor products of Banach spaces and spaces of homogeneous polynomials. If a Banach space X admits an atomic decomposition of a certain kind, we show that the symmetrized tensor product of the elements of the atomic decomposition provides an atomic decomposition for the symmetric tensor product ⊗s, μ n X, for any symmetric tensor norm μ. In addition, the reciprocal statement is investigated and analogous consequences for the full tensor product are obtained. Finally we apply the previous results to establish the existence of monomial atomic decompositions for certain ideals of polynomials on X. © 2008 Elsevier Inc. All rights reserved. Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We study the existence of atomic decompositions for tensor products of Banach spaces and spaces of homogeneous polynomials. If a Banach space X admits an atomic decomposition of a certain kind, we show that the symmetrized tensor product of the elements of the atomic decomposition provides an atomic decomposition for the symmetric tensor product ⊗s, μ n X, for any symmetric tensor norm μ. In addition, the reciprocal statement is investigated and analogous consequences for the full tensor product are obtained. Finally we apply the previous results to establish the existence of monomial atomic decompositions for certain ideals of polynomials on X. © 2008 Elsevier Inc. All rights reserved. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v347_n1_p243_Carando |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v347_n1_p243_Carando |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 2008;347(1):243-254 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618735116091392 |
score |
13.070432 |