Geometry of integral polynomials, M-ideals and unique norm preserving extensions
- Autores
- Dimant, Veronica Isabel; Galicer, Daniel Eric; García, Ricardo
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We use the Aron–Berner extension to prove that the set of extreme points of the unit ball of the space of integral k-homogeneous polynomials over a real Banach space X is {±φk: φ ∈ X∗, φ = 1}. With this description we show that, for real Banach spaces X and Y , if X is a nontrivial M-ideal in Y , then k,s εk,s X (the k-th symmetric tensor product of X endowed with the injective symmetric tensor norm) is never an M-ideal in k,s εk,s Y . This result marks up a difference with the behavior of nonsymmetric tensors since, when X is an M-ideal in Y , it is known that k εkX (the k-th tensor product of X endowed with the injective tensor norm) is an M-ideal in k εkY . Nevertheless, if X is also Asplund, we prove that every integral k-homogeneous polynomial in X has a unique extension to Y that preserves the integral norm. Other applications to the metric and isomorphic theory of symmetric tensor products and polynomial ideals are also given.
Fil: Dimant, Veronica Isabel. Universidad de San Andres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Galicer, Daniel Eric. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: García, Ricardo. Universidad de Extremadura; España - Materia
-
Integral Polynomials
Symmetric Tensor Products
M-Ideals
Extreme Points - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19933
Ver los metadatos del registro completo
id |
CONICETDig_5061131997e892197d852998d3e36a5f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19933 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Geometry of integral polynomials, M-ideals and unique norm preserving extensionsDimant, Veronica IsabelGalicer, Daniel EricGarcía, RicardoIntegral PolynomialsSymmetric Tensor ProductsM-IdealsExtreme Pointshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We use the Aron–Berner extension to prove that the set of extreme points of the unit ball of the space of integral k-homogeneous polynomials over a real Banach space X is {±φk: φ ∈ X∗, φ = 1}. With this description we show that, for real Banach spaces X and Y , if X is a nontrivial M-ideal in Y , then k,s εk,s X (the k-th symmetric tensor product of X endowed with the injective symmetric tensor norm) is never an M-ideal in k,s εk,s Y . This result marks up a difference with the behavior of nonsymmetric tensors since, when X is an M-ideal in Y , it is known that k εkX (the k-th tensor product of X endowed with the injective tensor norm) is an M-ideal in k εkY . Nevertheless, if X is also Asplund, we prove that every integral k-homogeneous polynomial in X has a unique extension to Y that preserves the integral norm. Other applications to the metric and isomorphic theory of symmetric tensor products and polynomial ideals are also given.Fil: Dimant, Veronica Isabel. Universidad de San Andres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Galicer, Daniel Eric. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: García, Ricardo. Universidad de Extremadura; EspañaElsevier Inc2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19933Dimant, Veronica Isabel; Galicer, Daniel Eric; García, Ricardo; Geometry of integral polynomials, M-ideals and unique norm preserving extensions; Elsevier Inc; Journal Of Functional Analysis; 262; 5; 3-2012; 1987-20120022-1236CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2011.12.021info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123611004605info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1108.3975info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:29:03Zoai:ri.conicet.gov.ar:11336/19933instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:29:03.309CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Geometry of integral polynomials, M-ideals and unique norm preserving extensions |
title |
Geometry of integral polynomials, M-ideals and unique norm preserving extensions |
spellingShingle |
Geometry of integral polynomials, M-ideals and unique norm preserving extensions Dimant, Veronica Isabel Integral Polynomials Symmetric Tensor Products M-Ideals Extreme Points |
title_short |
Geometry of integral polynomials, M-ideals and unique norm preserving extensions |
title_full |
Geometry of integral polynomials, M-ideals and unique norm preserving extensions |
title_fullStr |
Geometry of integral polynomials, M-ideals and unique norm preserving extensions |
title_full_unstemmed |
Geometry of integral polynomials, M-ideals and unique norm preserving extensions |
title_sort |
Geometry of integral polynomials, M-ideals and unique norm preserving extensions |
dc.creator.none.fl_str_mv |
Dimant, Veronica Isabel Galicer, Daniel Eric García, Ricardo |
author |
Dimant, Veronica Isabel |
author_facet |
Dimant, Veronica Isabel Galicer, Daniel Eric García, Ricardo |
author_role |
author |
author2 |
Galicer, Daniel Eric García, Ricardo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Integral Polynomials Symmetric Tensor Products M-Ideals Extreme Points |
topic |
Integral Polynomials Symmetric Tensor Products M-Ideals Extreme Points |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We use the Aron–Berner extension to prove that the set of extreme points of the unit ball of the space of integral k-homogeneous polynomials over a real Banach space X is {±φk: φ ∈ X∗, φ = 1}. With this description we show that, for real Banach spaces X and Y , if X is a nontrivial M-ideal in Y , then k,s εk,s X (the k-th symmetric tensor product of X endowed with the injective symmetric tensor norm) is never an M-ideal in k,s εk,s Y . This result marks up a difference with the behavior of nonsymmetric tensors since, when X is an M-ideal in Y , it is known that k εkX (the k-th tensor product of X endowed with the injective tensor norm) is an M-ideal in k εkY . Nevertheless, if X is also Asplund, we prove that every integral k-homogeneous polynomial in X has a unique extension to Y that preserves the integral norm. Other applications to the metric and isomorphic theory of symmetric tensor products and polynomial ideals are also given. Fil: Dimant, Veronica Isabel. Universidad de San Andres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Galicer, Daniel Eric. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: García, Ricardo. Universidad de Extremadura; España |
description |
We use the Aron–Berner extension to prove that the set of extreme points of the unit ball of the space of integral k-homogeneous polynomials over a real Banach space X is {±φk: φ ∈ X∗, φ = 1}. With this description we show that, for real Banach spaces X and Y , if X is a nontrivial M-ideal in Y , then k,s εk,s X (the k-th symmetric tensor product of X endowed with the injective symmetric tensor norm) is never an M-ideal in k,s εk,s Y . This result marks up a difference with the behavior of nonsymmetric tensors since, when X is an M-ideal in Y , it is known that k εkX (the k-th tensor product of X endowed with the injective tensor norm) is an M-ideal in k εkY . Nevertheless, if X is also Asplund, we prove that every integral k-homogeneous polynomial in X has a unique extension to Y that preserves the integral norm. Other applications to the metric and isomorphic theory of symmetric tensor products and polynomial ideals are also given. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19933 Dimant, Veronica Isabel; Galicer, Daniel Eric; García, Ricardo; Geometry of integral polynomials, M-ideals and unique norm preserving extensions; Elsevier Inc; Journal Of Functional Analysis; 262; 5; 3-2012; 1987-2012 0022-1236 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19933 |
identifier_str_mv |
Dimant, Veronica Isabel; Galicer, Daniel Eric; García, Ricardo; Geometry of integral polynomials, M-ideals and unique norm preserving extensions; Elsevier Inc; Journal Of Functional Analysis; 262; 5; 3-2012; 1987-2012 0022-1236 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2011.12.021 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123611004605 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1108.3975 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083430299729920 |
score |
13.22299 |