On the zeros of certain polynomials and entire functions
- Autores
- Panzone, Pablo Andres
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Entire functions whose coefficients are polynomials having real and negative roots are built from Touchard polynomials. The particular set of polynomials (Formula Presented) is shown to have purely complex roots, where we show a connection of these polynomials with certain approximations of the Riemann’s zeta function. Also a certain class of Fourier transforms is shown to have only real roots.
Fil: Panzone, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
ENTIRE FUNCTIONS
POLYNOMIALS
RIEMANN’S ZETA FUNCTION
ZEROS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/218732
Ver los metadatos del registro completo
id |
CONICETDig_ef0a234750697ef0829e63d88f069382 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/218732 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the zeros of certain polynomials and entire functionsPanzone, Pablo AndresENTIRE FUNCTIONSPOLYNOMIALSRIEMANN’S ZETA FUNCTIONZEROShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Entire functions whose coefficients are polynomials having real and negative roots are built from Touchard polynomials. The particular set of polynomials (Formula Presented) is shown to have purely complex roots, where we show a connection of these polynomials with certain approximations of the Riemann’s zeta function. Also a certain class of Fourier transforms is shown to have only real roots.Fil: Panzone, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaUniversidad Católica del Norte2023-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/218732Panzone, Pablo Andres; On the zeros of certain polynomials and entire functions; Universidad Católica del Norte; Proyecciones; 42; 4; 8-2023; 861-8770716-09170717-6279CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.scielo.cl/scielo.php?pid=S0716-09172023000400861&script=sci_arttextinfo:eu-repo/semantics/altIdentifier/doi/10.22199/issn.0717-6279-5388info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:13Zoai:ri.conicet.gov.ar:11336/218732instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:13.433CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the zeros of certain polynomials and entire functions |
title |
On the zeros of certain polynomials and entire functions |
spellingShingle |
On the zeros of certain polynomials and entire functions Panzone, Pablo Andres ENTIRE FUNCTIONS POLYNOMIALS RIEMANN’S ZETA FUNCTION ZEROS |
title_short |
On the zeros of certain polynomials and entire functions |
title_full |
On the zeros of certain polynomials and entire functions |
title_fullStr |
On the zeros of certain polynomials and entire functions |
title_full_unstemmed |
On the zeros of certain polynomials and entire functions |
title_sort |
On the zeros of certain polynomials and entire functions |
dc.creator.none.fl_str_mv |
Panzone, Pablo Andres |
author |
Panzone, Pablo Andres |
author_facet |
Panzone, Pablo Andres |
author_role |
author |
dc.subject.none.fl_str_mv |
ENTIRE FUNCTIONS POLYNOMIALS RIEMANN’S ZETA FUNCTION ZEROS |
topic |
ENTIRE FUNCTIONS POLYNOMIALS RIEMANN’S ZETA FUNCTION ZEROS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Entire functions whose coefficients are polynomials having real and negative roots are built from Touchard polynomials. The particular set of polynomials (Formula Presented) is shown to have purely complex roots, where we show a connection of these polynomials with certain approximations of the Riemann’s zeta function. Also a certain class of Fourier transforms is shown to have only real roots. Fil: Panzone, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
description |
Entire functions whose coefficients are polynomials having real and negative roots are built from Touchard polynomials. The particular set of polynomials (Formula Presented) is shown to have purely complex roots, where we show a connection of these polynomials with certain approximations of the Riemann’s zeta function. Also a certain class of Fourier transforms is shown to have only real roots. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/218732 Panzone, Pablo Andres; On the zeros of certain polynomials and entire functions; Universidad Católica del Norte; Proyecciones; 42; 4; 8-2023; 861-877 0716-0917 0717-6279 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/218732 |
identifier_str_mv |
Panzone, Pablo Andres; On the zeros of certain polynomials and entire functions; Universidad Católica del Norte; Proyecciones; 42; 4; 8-2023; 861-877 0716-0917 0717-6279 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.scielo.cl/scielo.php?pid=S0716-09172023000400861&script=sci_arttext info:eu-repo/semantics/altIdentifier/doi/10.22199/issn.0717-6279-5388 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Católica del Norte |
publisher.none.fl_str_mv |
Universidad Católica del Norte |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614503284604928 |
score |
13.070432 |