On the zeros of certain polynomials and entire functions

Autores
Panzone, Pablo Andres
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Entire functions whose coefficients are polynomials having real and negative roots are built from Touchard polynomials. The particular set of polynomials (Formula Presented) is shown to have purely complex roots, where we show a connection of these polynomials with certain approximations of the Riemann’s zeta function. Also a certain class of Fourier transforms is shown to have only real roots.
Fil: Panzone, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Materia
ENTIRE FUNCTIONS
POLYNOMIALS
RIEMANN’S ZETA FUNCTION
ZEROS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/218732

id CONICETDig_ef0a234750697ef0829e63d88f069382
oai_identifier_str oai:ri.conicet.gov.ar:11336/218732
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the zeros of certain polynomials and entire functionsPanzone, Pablo AndresENTIRE FUNCTIONSPOLYNOMIALSRIEMANN’S ZETA FUNCTIONZEROShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Entire functions whose coefficients are polynomials having real and negative roots are built from Touchard polynomials. The particular set of polynomials (Formula Presented) is shown to have purely complex roots, where we show a connection of these polynomials with certain approximations of the Riemann’s zeta function. Also a certain class of Fourier transforms is shown to have only real roots.Fil: Panzone, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaUniversidad Católica del Norte2023-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/218732Panzone, Pablo Andres; On the zeros of certain polynomials and entire functions; Universidad Católica del Norte; Proyecciones; 42; 4; 8-2023; 861-8770716-09170717-6279CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.scielo.cl/scielo.php?pid=S0716-09172023000400861&script=sci_arttextinfo:eu-repo/semantics/altIdentifier/doi/10.22199/issn.0717-6279-5388info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:13Zoai:ri.conicet.gov.ar:11336/218732instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:13.433CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the zeros of certain polynomials and entire functions
title On the zeros of certain polynomials and entire functions
spellingShingle On the zeros of certain polynomials and entire functions
Panzone, Pablo Andres
ENTIRE FUNCTIONS
POLYNOMIALS
RIEMANN’S ZETA FUNCTION
ZEROS
title_short On the zeros of certain polynomials and entire functions
title_full On the zeros of certain polynomials and entire functions
title_fullStr On the zeros of certain polynomials and entire functions
title_full_unstemmed On the zeros of certain polynomials and entire functions
title_sort On the zeros of certain polynomials and entire functions
dc.creator.none.fl_str_mv Panzone, Pablo Andres
author Panzone, Pablo Andres
author_facet Panzone, Pablo Andres
author_role author
dc.subject.none.fl_str_mv ENTIRE FUNCTIONS
POLYNOMIALS
RIEMANN’S ZETA FUNCTION
ZEROS
topic ENTIRE FUNCTIONS
POLYNOMIALS
RIEMANN’S ZETA FUNCTION
ZEROS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Entire functions whose coefficients are polynomials having real and negative roots are built from Touchard polynomials. The particular set of polynomials (Formula Presented) is shown to have purely complex roots, where we show a connection of these polynomials with certain approximations of the Riemann’s zeta function. Also a certain class of Fourier transforms is shown to have only real roots.
Fil: Panzone, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
description Entire functions whose coefficients are polynomials having real and negative roots are built from Touchard polynomials. The particular set of polynomials (Formula Presented) is shown to have purely complex roots, where we show a connection of these polynomials with certain approximations of the Riemann’s zeta function. Also a certain class of Fourier transforms is shown to have only real roots.
publishDate 2023
dc.date.none.fl_str_mv 2023-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/218732
Panzone, Pablo Andres; On the zeros of certain polynomials and entire functions; Universidad Católica del Norte; Proyecciones; 42; 4; 8-2023; 861-877
0716-0917
0717-6279
CONICET Digital
CONICET
url http://hdl.handle.net/11336/218732
identifier_str_mv Panzone, Pablo Andres; On the zeros of certain polynomials and entire functions; Universidad Católica del Norte; Proyecciones; 42; 4; 8-2023; 861-877
0716-0917
0717-6279
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.scielo.cl/scielo.php?pid=S0716-09172023000400861&script=sci_arttext
info:eu-repo/semantics/altIdentifier/doi/10.22199/issn.0717-6279-5388
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad Católica del Norte
publisher.none.fl_str_mv Universidad Católica del Norte
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614503284604928
score 13.070432