Orbits of homogeneous polynomials on Banach spaces
- Autores
- Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the dynamics induced by homogeneous polynomials on Banach spaces. It is known that no homogeneous polynomial defined on a Banach space can have a dense orbit. We show a simple and natural example of a homogeneous polynomial with an orbit that is at the same time-dense (the orbit meets every ball of radius), weakly dense and such that is dense for every that either is unbounded or has 0 as an accumulation point. Moreover, we generalize the construction to arbitrary infinite-dimensional separable Banach spaces. To prove this, we study Julia sets of homogeneous polynomials on Banach spaces.
Fil: Cardeccia, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina - Materia
-
HYPERCYCLIC OPERATORS
JULIA SETS
POLYNOMICAL DYNAMICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/141629
Ver los metadatos del registro completo
id |
CONICETDig_7407605395dafd344eafa04a65c23d53 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/141629 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Orbits of homogeneous polynomials on Banach spacesCardeccia, Rodrigo AlejandroMuro, Luis Santiago MiguelHYPERCYCLIC OPERATORSJULIA SETSPOLYNOMICAL DYNAMICShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the dynamics induced by homogeneous polynomials on Banach spaces. It is known that no homogeneous polynomial defined on a Banach space can have a dense orbit. We show a simple and natural example of a homogeneous polynomial with an orbit that is at the same time-dense (the orbit meets every ball of radius), weakly dense and such that is dense for every that either is unbounded or has 0 as an accumulation point. Moreover, we generalize the construction to arbitrary infinite-dimensional separable Banach spaces. To prove this, we study Julia sets of homogeneous polynomials on Banach spaces.Fil: Cardeccia, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaCambridge University Press2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/141629Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Orbits of homogeneous polynomials on Banach spaces; Cambridge University Press; Ergodic Theory And Dynamical Systems; 41; 6; 6-2021; 1627-16550143-3857CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/abs/orbits-of-homogeneous-polynomials-on-banach-spaces/13760F4715E433F6390CE6D84F956E36info:eu-repo/semantics/altIdentifier/doi/10.1017/etds.2020.17info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1806.11543info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:30Zoai:ri.conicet.gov.ar:11336/141629instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:30.419CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Orbits of homogeneous polynomials on Banach spaces |
title |
Orbits of homogeneous polynomials on Banach spaces |
spellingShingle |
Orbits of homogeneous polynomials on Banach spaces Cardeccia, Rodrigo Alejandro HYPERCYCLIC OPERATORS JULIA SETS POLYNOMICAL DYNAMICS |
title_short |
Orbits of homogeneous polynomials on Banach spaces |
title_full |
Orbits of homogeneous polynomials on Banach spaces |
title_fullStr |
Orbits of homogeneous polynomials on Banach spaces |
title_full_unstemmed |
Orbits of homogeneous polynomials on Banach spaces |
title_sort |
Orbits of homogeneous polynomials on Banach spaces |
dc.creator.none.fl_str_mv |
Cardeccia, Rodrigo Alejandro Muro, Luis Santiago Miguel |
author |
Cardeccia, Rodrigo Alejandro |
author_facet |
Cardeccia, Rodrigo Alejandro Muro, Luis Santiago Miguel |
author_role |
author |
author2 |
Muro, Luis Santiago Miguel |
author2_role |
author |
dc.subject.none.fl_str_mv |
HYPERCYCLIC OPERATORS JULIA SETS POLYNOMICAL DYNAMICS |
topic |
HYPERCYCLIC OPERATORS JULIA SETS POLYNOMICAL DYNAMICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the dynamics induced by homogeneous polynomials on Banach spaces. It is known that no homogeneous polynomial defined on a Banach space can have a dense orbit. We show a simple and natural example of a homogeneous polynomial with an orbit that is at the same time-dense (the orbit meets every ball of radius), weakly dense and such that is dense for every that either is unbounded or has 0 as an accumulation point. Moreover, we generalize the construction to arbitrary infinite-dimensional separable Banach spaces. To prove this, we study Julia sets of homogeneous polynomials on Banach spaces. Fil: Cardeccia, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
description |
We study the dynamics induced by homogeneous polynomials on Banach spaces. It is known that no homogeneous polynomial defined on a Banach space can have a dense orbit. We show a simple and natural example of a homogeneous polynomial with an orbit that is at the same time-dense (the orbit meets every ball of radius), weakly dense and such that is dense for every that either is unbounded or has 0 as an accumulation point. Moreover, we generalize the construction to arbitrary infinite-dimensional separable Banach spaces. To prove this, we study Julia sets of homogeneous polynomials on Banach spaces. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/141629 Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Orbits of homogeneous polynomials on Banach spaces; Cambridge University Press; Ergodic Theory And Dynamical Systems; 41; 6; 6-2021; 1627-1655 0143-3857 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/141629 |
identifier_str_mv |
Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Orbits of homogeneous polynomials on Banach spaces; Cambridge University Press; Ergodic Theory And Dynamical Systems; 41; 6; 6-2021; 1627-1655 0143-3857 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/abs/orbits-of-homogeneous-polynomials-on-banach-spaces/13760F4715E433F6390CE6D84F956E36 info:eu-repo/semantics/altIdentifier/doi/10.1017/etds.2020.17 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1806.11543 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269803271684096 |
score |
13.13397 |