Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction

Autores
Fernández, Roberto; Hollander, Frank den; Martínez Linares, Julián Facundo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We continue our study of Gibbs-non-Gibbs dynamical transitions. In the present paper we consider a system of Ising spins on a large discrete torus with a Kac-type interaction subject to an independent spin-flip dynamics (infinite-temperature Glauber dynamics). We show that, in accordance with the program outlined in van Enter et al. (Moscow Math. J. 10:687–711, 2010), in the thermodynamic limit Gibbs-non-Gibbs dynamical transitions are equivalent to bifurcations in the set of global minima of the large-deviation rate function for the trajectories of the empirical density conditional on their endpoint. More precisely, the time-evolved measure is non-Gibbs if and only if this set is not a singleton for some value of the endpoint. A partial description of the possible scenarios of bifurcation is given, leading to a characterization of passages from Gibbs to non-Gibbs and vice versa, with sharp transition times. Our analysis provides a conceptual step-up from our earlier work on Gibbs-non-Gibbs dynamical transitions for the Curie–Weiss model, where the mean-field interaction allowed us to focus on trajectories of the empirical magnetization rather than the empirical density.
Fil: Fernández, Roberto. Utrecht Univeristy; Países Bajos
Fil: Hollander, Frank den. Leiden University; Países Bajos
Fil: Martínez Linares, Julián Facundo. Leiden University; Países Bajos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Materia
Gibbs Non Gibbs
Kac Potential
Large Deviations
Spin-Flip Dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18775

id CONICETDig_a00a61545abb05be30323d21a5cf116d
oai_identifier_str oai:ri.conicet.gov.ar:11336/18775
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type InteractionFernández, RobertoHollander, Frank denMartínez Linares, Julián FacundoGibbs Non GibbsKac PotentialLarge DeviationsSpin-Flip Dynamicshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We continue our study of Gibbs-non-Gibbs dynamical transitions. In the present paper we consider a system of Ising spins on a large discrete torus with a Kac-type interaction subject to an independent spin-flip dynamics (infinite-temperature Glauber dynamics). We show that, in accordance with the program outlined in van Enter et al. (Moscow Math. J. 10:687–711, 2010), in the thermodynamic limit Gibbs-non-Gibbs dynamical transitions are equivalent to bifurcations in the set of global minima of the large-deviation rate function for the trajectories of the empirical density conditional on their endpoint. More precisely, the time-evolved measure is non-Gibbs if and only if this set is not a singleton for some value of the endpoint. A partial description of the possible scenarios of bifurcation is given, leading to a characterization of passages from Gibbs to non-Gibbs and vice versa, with sharp transition times. Our analysis provides a conceptual step-up from our earlier work on Gibbs-non-Gibbs dynamical transitions for the Curie–Weiss model, where the mean-field interaction allowed us to focus on trajectories of the empirical magnetization rather than the empirical density.Fil: Fernández, Roberto. Utrecht Univeristy; Países BajosFil: Hollander, Frank den. Leiden University; Países BajosFil: Martínez Linares, Julián Facundo. Leiden University; Países Bajos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaSpringer2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18775Fernández, Roberto; Hollander, Frank den; Martínez Linares, Julián Facundo; Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction; Springer; Journal Of Statistical Physics; 156; 2; 7-2014; 203-2200022-47151572-9613CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10955-014-1004-0info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10955-014-1004-0info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.3667info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:19Zoai:ri.conicet.gov.ar:11336/18775instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:20.194CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction
title Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction
spellingShingle Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction
Fernández, Roberto
Gibbs Non Gibbs
Kac Potential
Large Deviations
Spin-Flip Dynamics
title_short Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction
title_full Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction
title_fullStr Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction
title_full_unstemmed Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction
title_sort Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction
dc.creator.none.fl_str_mv Fernández, Roberto
Hollander, Frank den
Martínez Linares, Julián Facundo
author Fernández, Roberto
author_facet Fernández, Roberto
Hollander, Frank den
Martínez Linares, Julián Facundo
author_role author
author2 Hollander, Frank den
Martínez Linares, Julián Facundo
author2_role author
author
dc.subject.none.fl_str_mv Gibbs Non Gibbs
Kac Potential
Large Deviations
Spin-Flip Dynamics
topic Gibbs Non Gibbs
Kac Potential
Large Deviations
Spin-Flip Dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We continue our study of Gibbs-non-Gibbs dynamical transitions. In the present paper we consider a system of Ising spins on a large discrete torus with a Kac-type interaction subject to an independent spin-flip dynamics (infinite-temperature Glauber dynamics). We show that, in accordance with the program outlined in van Enter et al. (Moscow Math. J. 10:687–711, 2010), in the thermodynamic limit Gibbs-non-Gibbs dynamical transitions are equivalent to bifurcations in the set of global minima of the large-deviation rate function for the trajectories of the empirical density conditional on their endpoint. More precisely, the time-evolved measure is non-Gibbs if and only if this set is not a singleton for some value of the endpoint. A partial description of the possible scenarios of bifurcation is given, leading to a characterization of passages from Gibbs to non-Gibbs and vice versa, with sharp transition times. Our analysis provides a conceptual step-up from our earlier work on Gibbs-non-Gibbs dynamical transitions for the Curie–Weiss model, where the mean-field interaction allowed us to focus on trajectories of the empirical magnetization rather than the empirical density.
Fil: Fernández, Roberto. Utrecht Univeristy; Países Bajos
Fil: Hollander, Frank den. Leiden University; Países Bajos
Fil: Martínez Linares, Julián Facundo. Leiden University; Países Bajos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
description We continue our study of Gibbs-non-Gibbs dynamical transitions. In the present paper we consider a system of Ising spins on a large discrete torus with a Kac-type interaction subject to an independent spin-flip dynamics (infinite-temperature Glauber dynamics). We show that, in accordance with the program outlined in van Enter et al. (Moscow Math. J. 10:687–711, 2010), in the thermodynamic limit Gibbs-non-Gibbs dynamical transitions are equivalent to bifurcations in the set of global minima of the large-deviation rate function for the trajectories of the empirical density conditional on their endpoint. More precisely, the time-evolved measure is non-Gibbs if and only if this set is not a singleton for some value of the endpoint. A partial description of the possible scenarios of bifurcation is given, leading to a characterization of passages from Gibbs to non-Gibbs and vice versa, with sharp transition times. Our analysis provides a conceptual step-up from our earlier work on Gibbs-non-Gibbs dynamical transitions for the Curie–Weiss model, where the mean-field interaction allowed us to focus on trajectories of the empirical magnetization rather than the empirical density.
publishDate 2014
dc.date.none.fl_str_mv 2014-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18775
Fernández, Roberto; Hollander, Frank den; Martínez Linares, Julián Facundo; Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction; Springer; Journal Of Statistical Physics; 156; 2; 7-2014; 203-220
0022-4715
1572-9613
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18775
identifier_str_mv Fernández, Roberto; Hollander, Frank den; Martínez Linares, Julián Facundo; Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction; Springer; Journal Of Statistical Physics; 156; 2; 7-2014; 203-220
0022-4715
1572-9613
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10955-014-1004-0
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10955-014-1004-0
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.3667
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269999207546880
score 13.13397