Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction
- Autores
- Fernández, Roberto; Hollander, Frank den; Martínez Linares, Julián Facundo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We continue our study of Gibbs-non-Gibbs dynamical transitions. In the present paper we consider a system of Ising spins on a large discrete torus with a Kac-type interaction subject to an independent spin-flip dynamics (infinite-temperature Glauber dynamics). We show that, in accordance with the program outlined in van Enter et al. (Moscow Math. J. 10:687–711, 2010), in the thermodynamic limit Gibbs-non-Gibbs dynamical transitions are equivalent to bifurcations in the set of global minima of the large-deviation rate function for the trajectories of the empirical density conditional on their endpoint. More precisely, the time-evolved measure is non-Gibbs if and only if this set is not a singleton for some value of the endpoint. A partial description of the possible scenarios of bifurcation is given, leading to a characterization of passages from Gibbs to non-Gibbs and vice versa, with sharp transition times. Our analysis provides a conceptual step-up from our earlier work on Gibbs-non-Gibbs dynamical transitions for the Curie–Weiss model, where the mean-field interaction allowed us to focus on trajectories of the empirical magnetization rather than the empirical density.
Fil: Fernández, Roberto. Utrecht Univeristy; Países Bajos
Fil: Hollander, Frank den. Leiden University; Países Bajos
Fil: Martínez Linares, Julián Facundo. Leiden University; Países Bajos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina - Materia
-
Gibbs Non Gibbs
Kac Potential
Large Deviations
Spin-Flip Dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18775
Ver los metadatos del registro completo
id |
CONICETDig_a00a61545abb05be30323d21a5cf116d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18775 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type InteractionFernández, RobertoHollander, Frank denMartínez Linares, Julián FacundoGibbs Non GibbsKac PotentialLarge DeviationsSpin-Flip Dynamicshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We continue our study of Gibbs-non-Gibbs dynamical transitions. In the present paper we consider a system of Ising spins on a large discrete torus with a Kac-type interaction subject to an independent spin-flip dynamics (infinite-temperature Glauber dynamics). We show that, in accordance with the program outlined in van Enter et al. (Moscow Math. J. 10:687–711, 2010), in the thermodynamic limit Gibbs-non-Gibbs dynamical transitions are equivalent to bifurcations in the set of global minima of the large-deviation rate function for the trajectories of the empirical density conditional on their endpoint. More precisely, the time-evolved measure is non-Gibbs if and only if this set is not a singleton for some value of the endpoint. A partial description of the possible scenarios of bifurcation is given, leading to a characterization of passages from Gibbs to non-Gibbs and vice versa, with sharp transition times. Our analysis provides a conceptual step-up from our earlier work on Gibbs-non-Gibbs dynamical transitions for the Curie–Weiss model, where the mean-field interaction allowed us to focus on trajectories of the empirical magnetization rather than the empirical density.Fil: Fernández, Roberto. Utrecht Univeristy; Países BajosFil: Hollander, Frank den. Leiden University; Países BajosFil: Martínez Linares, Julián Facundo. Leiden University; Países Bajos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaSpringer2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18775Fernández, Roberto; Hollander, Frank den; Martínez Linares, Julián Facundo; Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction; Springer; Journal Of Statistical Physics; 156; 2; 7-2014; 203-2200022-47151572-9613CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10955-014-1004-0info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10955-014-1004-0info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.3667info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:19Zoai:ri.conicet.gov.ar:11336/18775instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:20.194CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction |
title |
Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction |
spellingShingle |
Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction Fernández, Roberto Gibbs Non Gibbs Kac Potential Large Deviations Spin-Flip Dynamics |
title_short |
Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction |
title_full |
Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction |
title_fullStr |
Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction |
title_full_unstemmed |
Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction |
title_sort |
Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction |
dc.creator.none.fl_str_mv |
Fernández, Roberto Hollander, Frank den Martínez Linares, Julián Facundo |
author |
Fernández, Roberto |
author_facet |
Fernández, Roberto Hollander, Frank den Martínez Linares, Julián Facundo |
author_role |
author |
author2 |
Hollander, Frank den Martínez Linares, Julián Facundo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Gibbs Non Gibbs Kac Potential Large Deviations Spin-Flip Dynamics |
topic |
Gibbs Non Gibbs Kac Potential Large Deviations Spin-Flip Dynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We continue our study of Gibbs-non-Gibbs dynamical transitions. In the present paper we consider a system of Ising spins on a large discrete torus with a Kac-type interaction subject to an independent spin-flip dynamics (infinite-temperature Glauber dynamics). We show that, in accordance with the program outlined in van Enter et al. (Moscow Math. J. 10:687–711, 2010), in the thermodynamic limit Gibbs-non-Gibbs dynamical transitions are equivalent to bifurcations in the set of global minima of the large-deviation rate function for the trajectories of the empirical density conditional on their endpoint. More precisely, the time-evolved measure is non-Gibbs if and only if this set is not a singleton for some value of the endpoint. A partial description of the possible scenarios of bifurcation is given, leading to a characterization of passages from Gibbs to non-Gibbs and vice versa, with sharp transition times. Our analysis provides a conceptual step-up from our earlier work on Gibbs-non-Gibbs dynamical transitions for the Curie–Weiss model, where the mean-field interaction allowed us to focus on trajectories of the empirical magnetization rather than the empirical density. Fil: Fernández, Roberto. Utrecht Univeristy; Países Bajos Fil: Hollander, Frank den. Leiden University; Países Bajos Fil: Martínez Linares, Julián Facundo. Leiden University; Países Bajos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina |
description |
We continue our study of Gibbs-non-Gibbs dynamical transitions. In the present paper we consider a system of Ising spins on a large discrete torus with a Kac-type interaction subject to an independent spin-flip dynamics (infinite-temperature Glauber dynamics). We show that, in accordance with the program outlined in van Enter et al. (Moscow Math. J. 10:687–711, 2010), in the thermodynamic limit Gibbs-non-Gibbs dynamical transitions are equivalent to bifurcations in the set of global minima of the large-deviation rate function for the trajectories of the empirical density conditional on their endpoint. More precisely, the time-evolved measure is non-Gibbs if and only if this set is not a singleton for some value of the endpoint. A partial description of the possible scenarios of bifurcation is given, leading to a characterization of passages from Gibbs to non-Gibbs and vice versa, with sharp transition times. Our analysis provides a conceptual step-up from our earlier work on Gibbs-non-Gibbs dynamical transitions for the Curie–Weiss model, where the mean-field interaction allowed us to focus on trajectories of the empirical magnetization rather than the empirical density. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18775 Fernández, Roberto; Hollander, Frank den; Martínez Linares, Julián Facundo; Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction; Springer; Journal Of Statistical Physics; 156; 2; 7-2014; 203-220 0022-4715 1572-9613 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18775 |
identifier_str_mv |
Fernández, Roberto; Hollander, Frank den; Martínez Linares, Julián Facundo; Variational Description of Gibbs-Non-Gibbs Dynamical Transitions for Spin-Flip Systems with a Kac-Type Interaction; Springer; Journal Of Statistical Physics; 156; 2; 7-2014; 203-220 0022-4715 1572-9613 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10955-014-1004-0 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10955-014-1004-0 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.3667 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269999207546880 |
score |
13.13397 |