Well-posedness and convergence results for elliptic hemivariational inequalities
- Autores
- Sofonea, Mircea; Tarzia, Domingo Alberto
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider an elliptic hemivariational inequality in a real reflexive Banach space X which, under appropriate assumptions on the data, has a unique solution u ∈ X. We recall the concepts of wellposedness in the sense of Tykhonov and Levitin-Polyak for this inequality, and then we extend these concepts by introducing new well-posedness concepts, constructed with a larger set of approximating sequences. We also prove that, under additional assumptions, these new well-posedness concepts are optimal in the sense that all the sequences of elements of X which converge to the solution u are approximating sequences. This result, presented in Theorem 4.1, provides necessary and sufficient conditions for any sequence {un} ⊂ X which guarantees that it converges to u and, therefore, it represents a convergence criterion to the solution of the hemivariational inequality. This criterion can be used in various applications. To provide an example, we illustrate its use in the study of a penalty method associated to an elliptic hemivariational inequality which describes the equilibrium of an elastic membrane in contact with a obstacle, the so-called foundation.
Fil: Sofonea, Mircea. Université de Perpignan Via Domitia; Francia
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina - Materia
-
Well-posed problem
Convergence results
Elliptic hemivariational inequalities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/274443
Ver los metadatos del registro completo
| id |
CONICETDig_260a16aa5b3bf1572dcb33fe8cab9dbe |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/274443 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Well-posedness and convergence results for elliptic hemivariational inequalitiesSofonea, MirceaTarzia, Domingo AlbertoWell-posed problemConvergence resultsElliptic hemivariational inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider an elliptic hemivariational inequality in a real reflexive Banach space X which, under appropriate assumptions on the data, has a unique solution u ∈ X. We recall the concepts of wellposedness in the sense of Tykhonov and Levitin-Polyak for this inequality, and then we extend these concepts by introducing new well-posedness concepts, constructed with a larger set of approximating sequences. We also prove that, under additional assumptions, these new well-posedness concepts are optimal in the sense that all the sequences of elements of X which converge to the solution u are approximating sequences. This result, presented in Theorem 4.1, provides necessary and sufficient conditions for any sequence {un} ⊂ X which guarantees that it converges to u and, therefore, it represents a convergence criterion to the solution of the hemivariational inequality. This criterion can be used in various applications. To provide an example, we illustrate its use in the study of a penalty method associated to an elliptic hemivariational inequality which describes the equilibrium of an elastic membrane in contact with a obstacle, the so-called foundation.Fil: Sofonea, Mircea. Université de Perpignan Via Domitia; FranciaFil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaBiemdas Academic Publishers2025-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274443Sofonea, Mircea; Tarzia, Domingo Alberto; Well-posedness and convergence results for elliptic hemivariational inequalities; Biemdas Academic Publishers; Applied Set-Valued Analysis and Optimization; 7; 1; 4-2025; 1-212562-77752562-7783CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://asvao.biemdas.com/archives/1956info:eu-repo/semantics/altIdentifier/doi/10.23952/asvao.7.2025.1.01info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:57:56Zoai:ri.conicet.gov.ar:11336/274443instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:57:56.688CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Well-posedness and convergence results for elliptic hemivariational inequalities |
| title |
Well-posedness and convergence results for elliptic hemivariational inequalities |
| spellingShingle |
Well-posedness and convergence results for elliptic hemivariational inequalities Sofonea, Mircea Well-posed problem Convergence results Elliptic hemivariational inequalities |
| title_short |
Well-posedness and convergence results for elliptic hemivariational inequalities |
| title_full |
Well-posedness and convergence results for elliptic hemivariational inequalities |
| title_fullStr |
Well-posedness and convergence results for elliptic hemivariational inequalities |
| title_full_unstemmed |
Well-posedness and convergence results for elliptic hemivariational inequalities |
| title_sort |
Well-posedness and convergence results for elliptic hemivariational inequalities |
| dc.creator.none.fl_str_mv |
Sofonea, Mircea Tarzia, Domingo Alberto |
| author |
Sofonea, Mircea |
| author_facet |
Sofonea, Mircea Tarzia, Domingo Alberto |
| author_role |
author |
| author2 |
Tarzia, Domingo Alberto |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Well-posed problem Convergence results Elliptic hemivariational inequalities |
| topic |
Well-posed problem Convergence results Elliptic hemivariational inequalities |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We consider an elliptic hemivariational inequality in a real reflexive Banach space X which, under appropriate assumptions on the data, has a unique solution u ∈ X. We recall the concepts of wellposedness in the sense of Tykhonov and Levitin-Polyak for this inequality, and then we extend these concepts by introducing new well-posedness concepts, constructed with a larger set of approximating sequences. We also prove that, under additional assumptions, these new well-posedness concepts are optimal in the sense that all the sequences of elements of X which converge to the solution u are approximating sequences. This result, presented in Theorem 4.1, provides necessary and sufficient conditions for any sequence {un} ⊂ X which guarantees that it converges to u and, therefore, it represents a convergence criterion to the solution of the hemivariational inequality. This criterion can be used in various applications. To provide an example, we illustrate its use in the study of a penalty method associated to an elliptic hemivariational inequality which describes the equilibrium of an elastic membrane in contact with a obstacle, the so-called foundation. Fil: Sofonea, Mircea. Université de Perpignan Via Domitia; Francia Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina |
| description |
We consider an elliptic hemivariational inequality in a real reflexive Banach space X which, under appropriate assumptions on the data, has a unique solution u ∈ X. We recall the concepts of wellposedness in the sense of Tykhonov and Levitin-Polyak for this inequality, and then we extend these concepts by introducing new well-posedness concepts, constructed with a larger set of approximating sequences. We also prove that, under additional assumptions, these new well-posedness concepts are optimal in the sense that all the sequences of elements of X which converge to the solution u are approximating sequences. This result, presented in Theorem 4.1, provides necessary and sufficient conditions for any sequence {un} ⊂ X which guarantees that it converges to u and, therefore, it represents a convergence criterion to the solution of the hemivariational inequality. This criterion can be used in various applications. To provide an example, we illustrate its use in the study of a penalty method associated to an elliptic hemivariational inequality which describes the equilibrium of an elastic membrane in contact with a obstacle, the so-called foundation. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/274443 Sofonea, Mircea; Tarzia, Domingo Alberto; Well-posedness and convergence results for elliptic hemivariational inequalities; Biemdas Academic Publishers; Applied Set-Valued Analysis and Optimization; 7; 1; 4-2025; 1-21 2562-7775 2562-7783 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/274443 |
| identifier_str_mv |
Sofonea, Mircea; Tarzia, Domingo Alberto; Well-posedness and convergence results for elliptic hemivariational inequalities; Biemdas Academic Publishers; Applied Set-Valued Analysis and Optimization; 7; 1; 4-2025; 1-21 2562-7775 2562-7783 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://asvao.biemdas.com/archives/1956 info:eu-repo/semantics/altIdentifier/doi/10.23952/asvao.7.2025.1.01 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Biemdas Academic Publishers |
| publisher.none.fl_str_mv |
Biemdas Academic Publishers |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598389855354880 |
| score |
12.976206 |