Well-posedness and convergence results for elliptic hemivariational inequalities

Autores
Sofonea, Mircea; Tarzia, Domingo Alberto
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider an elliptic hemivariational inequality in a real reflexive Banach space X which, under appropriate assumptions on the data, has a unique solution u ∈ X. We recall the concepts of wellposedness in the sense of Tykhonov and Levitin-Polyak for this inequality, and then we extend these concepts by introducing new well-posedness concepts, constructed with a larger set of approximating sequences. We also prove that, under additional assumptions, these new well-posedness concepts are optimal in the sense that all the sequences of elements of X which converge to the solution u are approximating sequences. This result, presented in Theorem 4.1, provides necessary and sufficient conditions for any sequence {un} ⊂ X which guarantees that it converges to u and, therefore, it represents a convergence criterion to the solution of the hemivariational inequality. This criterion can be used in various applications. To provide an example, we illustrate its use in the study of a penalty method associated to an elliptic hemivariational inequality which describes the equilibrium of an elastic membrane in contact with a obstacle, the so-called foundation.
Fil: Sofonea, Mircea. Université de Perpignan Via Domitia; Francia
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Materia
Well-posed problem
Convergence results
Elliptic hemivariational inequalities
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/274443

id CONICETDig_260a16aa5b3bf1572dcb33fe8cab9dbe
oai_identifier_str oai:ri.conicet.gov.ar:11336/274443
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Well-posedness and convergence results for elliptic hemivariational inequalitiesSofonea, MirceaTarzia, Domingo AlbertoWell-posed problemConvergence resultsElliptic hemivariational inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider an elliptic hemivariational inequality in a real reflexive Banach space X which, under appropriate assumptions on the data, has a unique solution u ∈ X. We recall the concepts of wellposedness in the sense of Tykhonov and Levitin-Polyak for this inequality, and then we extend these concepts by introducing new well-posedness concepts, constructed with a larger set of approximating sequences. We also prove that, under additional assumptions, these new well-posedness concepts are optimal in the sense that all the sequences of elements of X which converge to the solution u are approximating sequences. This result, presented in Theorem 4.1, provides necessary and sufficient conditions for any sequence {un} ⊂ X which guarantees that it converges to u and, therefore, it represents a convergence criterion to the solution of the hemivariational inequality. This criterion can be used in various applications. To provide an example, we illustrate its use in the study of a penalty method associated to an elliptic hemivariational inequality which describes the equilibrium of an elastic membrane in contact with a obstacle, the so-called foundation.Fil: Sofonea, Mircea. Université de Perpignan Via Domitia; FranciaFil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaBiemdas Academic Publishers2025-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274443Sofonea, Mircea; Tarzia, Domingo Alberto; Well-posedness and convergence results for elliptic hemivariational inequalities; Biemdas Academic Publishers; Applied Set-Valued Analysis and Optimization; 7; 1; 4-2025; 1-212562-77752562-7783CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://asvao.biemdas.com/archives/1956info:eu-repo/semantics/altIdentifier/doi/10.23952/asvao.7.2025.1.01info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:57:56Zoai:ri.conicet.gov.ar:11336/274443instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:57:56.688CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Well-posedness and convergence results for elliptic hemivariational inequalities
title Well-posedness and convergence results for elliptic hemivariational inequalities
spellingShingle Well-posedness and convergence results for elliptic hemivariational inequalities
Sofonea, Mircea
Well-posed problem
Convergence results
Elliptic hemivariational inequalities
title_short Well-posedness and convergence results for elliptic hemivariational inequalities
title_full Well-posedness and convergence results for elliptic hemivariational inequalities
title_fullStr Well-posedness and convergence results for elliptic hemivariational inequalities
title_full_unstemmed Well-posedness and convergence results for elliptic hemivariational inequalities
title_sort Well-posedness and convergence results for elliptic hemivariational inequalities
dc.creator.none.fl_str_mv Sofonea, Mircea
Tarzia, Domingo Alberto
author Sofonea, Mircea
author_facet Sofonea, Mircea
Tarzia, Domingo Alberto
author_role author
author2 Tarzia, Domingo Alberto
author2_role author
dc.subject.none.fl_str_mv Well-posed problem
Convergence results
Elliptic hemivariational inequalities
topic Well-posed problem
Convergence results
Elliptic hemivariational inequalities
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider an elliptic hemivariational inequality in a real reflexive Banach space X which, under appropriate assumptions on the data, has a unique solution u ∈ X. We recall the concepts of wellposedness in the sense of Tykhonov and Levitin-Polyak for this inequality, and then we extend these concepts by introducing new well-posedness concepts, constructed with a larger set of approximating sequences. We also prove that, under additional assumptions, these new well-posedness concepts are optimal in the sense that all the sequences of elements of X which converge to the solution u are approximating sequences. This result, presented in Theorem 4.1, provides necessary and sufficient conditions for any sequence {un} ⊂ X which guarantees that it converges to u and, therefore, it represents a convergence criterion to the solution of the hemivariational inequality. This criterion can be used in various applications. To provide an example, we illustrate its use in the study of a penalty method associated to an elliptic hemivariational inequality which describes the equilibrium of an elastic membrane in contact with a obstacle, the so-called foundation.
Fil: Sofonea, Mircea. Université de Perpignan Via Domitia; Francia
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
description We consider an elliptic hemivariational inequality in a real reflexive Banach space X which, under appropriate assumptions on the data, has a unique solution u ∈ X. We recall the concepts of wellposedness in the sense of Tykhonov and Levitin-Polyak for this inequality, and then we extend these concepts by introducing new well-posedness concepts, constructed with a larger set of approximating sequences. We also prove that, under additional assumptions, these new well-posedness concepts are optimal in the sense that all the sequences of elements of X which converge to the solution u are approximating sequences. This result, presented in Theorem 4.1, provides necessary and sufficient conditions for any sequence {un} ⊂ X which guarantees that it converges to u and, therefore, it represents a convergence criterion to the solution of the hemivariational inequality. This criterion can be used in various applications. To provide an example, we illustrate its use in the study of a penalty method associated to an elliptic hemivariational inequality which describes the equilibrium of an elastic membrane in contact with a obstacle, the so-called foundation.
publishDate 2025
dc.date.none.fl_str_mv 2025-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/274443
Sofonea, Mircea; Tarzia, Domingo Alberto; Well-posedness and convergence results for elliptic hemivariational inequalities; Biemdas Academic Publishers; Applied Set-Valued Analysis and Optimization; 7; 1; 4-2025; 1-21
2562-7775
2562-7783
CONICET Digital
CONICET
url http://hdl.handle.net/11336/274443
identifier_str_mv Sofonea, Mircea; Tarzia, Domingo Alberto; Well-posedness and convergence results for elliptic hemivariational inequalities; Biemdas Academic Publishers; Applied Set-Valued Analysis and Optimization; 7; 1; 4-2025; 1-21
2562-7775
2562-7783
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://asvao.biemdas.com/archives/1956
info:eu-repo/semantics/altIdentifier/doi/10.23952/asvao.7.2025.1.01
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Biemdas Academic Publishers
publisher.none.fl_str_mv Biemdas Academic Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848598389855354880
score 12.976206