Two weighted inequalities for maximal functions related to Cesàro convergence
- Autores
- Bernardis, Ana Lucia; Martín Reyes, Francisco Javier
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We characterize the pairs of weights (u, v) for which the maximal operator Mα- f (x) = supR>0 R-1-α ∫x-Rx-2R |f (s)|(x - R - s)α ds, -1 <α < 0, is of weak and restricted weak type (p, p) with respect to u(x) dx and v(x) dx. As a consequence we obtain analogous results for Mαf (x) = supR>0 R-1-α ∫R<|x-y|<2R |f(y)|(|x - y| -R)α dy. We apply the results to the study of the Cesàro-α convergence of singular integrals.
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España - Materia
-
Two weighted inequalities
Cesàro convergence - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100612
Ver los metadatos del registro completo
id |
CONICETDig_1b1f5c4791fc6e055a75ec1ee7ef0628 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100612 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Two weighted inequalities for maximal functions related to Cesàro convergenceBernardis, Ana LuciaMartín Reyes, Francisco JavierTwo weighted inequalitiesCesàro convergencehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We characterize the pairs of weights (u, v) for which the maximal operator Mα- f (x) = supR>0 R-1-α ∫x-Rx-2R |f (s)|(x - R - s)α ds, -1 <α < 0, is of weak and restricted weak type (p, p) with respect to u(x) dx and v(x) dx. As a consequence we obtain analogous results for Mαf (x) = supR>0 R-1-α ∫R<|x-y|<2R |f(y)|(|x - y| -R)α dy. We apply the results to the study of the Cesàro-α convergence of singular integrals.Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Martín Reyes, Francisco Javier. Universidad de Málaga; EspañaAustralian Mathematical Society2003-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100612Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Two weighted inequalities for maximal functions related to Cesàro convergence; Australian Mathematical Society; Journal Of The Australian Mathematical Society; 74; 12-2003; 111-1201446-7887CONICET DigitalCONICETenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:27Zoai:ri.conicet.gov.ar:11336/100612instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:27.982CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Two weighted inequalities for maximal functions related to Cesàro convergence |
title |
Two weighted inequalities for maximal functions related to Cesàro convergence |
spellingShingle |
Two weighted inequalities for maximal functions related to Cesàro convergence Bernardis, Ana Lucia Two weighted inequalities Cesàro convergence |
title_short |
Two weighted inequalities for maximal functions related to Cesàro convergence |
title_full |
Two weighted inequalities for maximal functions related to Cesàro convergence |
title_fullStr |
Two weighted inequalities for maximal functions related to Cesàro convergence |
title_full_unstemmed |
Two weighted inequalities for maximal functions related to Cesàro convergence |
title_sort |
Two weighted inequalities for maximal functions related to Cesàro convergence |
dc.creator.none.fl_str_mv |
Bernardis, Ana Lucia Martín Reyes, Francisco Javier |
author |
Bernardis, Ana Lucia |
author_facet |
Bernardis, Ana Lucia Martín Reyes, Francisco Javier |
author_role |
author |
author2 |
Martín Reyes, Francisco Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
Two weighted inequalities Cesàro convergence |
topic |
Two weighted inequalities Cesàro convergence |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We characterize the pairs of weights (u, v) for which the maximal operator Mα- f (x) = supR>0 R-1-α ∫x-Rx-2R |f (s)|(x - R - s)α ds, -1 <α < 0, is of weak and restricted weak type (p, p) with respect to u(x) dx and v(x) dx. As a consequence we obtain analogous results for Mαf (x) = supR>0 R-1-α ∫R<|x-y|<2R |f(y)|(|x - y| -R)α dy. We apply the results to the study of the Cesàro-α convergence of singular integrals. Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España |
description |
We characterize the pairs of weights (u, v) for which the maximal operator Mα- f (x) = supR>0 R-1-α ∫x-Rx-2R |f (s)|(x - R - s)α ds, -1 <α < 0, is of weak and restricted weak type (p, p) with respect to u(x) dx and v(x) dx. As a consequence we obtain analogous results for Mαf (x) = supR>0 R-1-α ∫R<|x-y|<2R |f(y)|(|x - y| -R)α dy. We apply the results to the study of the Cesàro-α convergence of singular integrals. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100612 Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Two weighted inequalities for maximal functions related to Cesàro convergence; Australian Mathematical Society; Journal Of The Australian Mathematical Society; 74; 12-2003; 111-120 1446-7887 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100612 |
identifier_str_mv |
Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Two weighted inequalities for maximal functions related to Cesàro convergence; Australian Mathematical Society; Journal Of The Australian Mathematical Society; 74; 12-2003; 111-120 1446-7887 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Australian Mathematical Society |
publisher.none.fl_str_mv |
Australian Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613632644612096 |
score |
13.070432 |