Convergence of distributed optimal control problems governed by elliptic variational inequalities
- Autores
- Boukrouche, Mahdi; Tarzia, Domingo Alberto
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- First, let $u_{g}$ be the unique solution of an elliptic variational inequality with source term $g$. We establish, in the general case, the error estimate between $u_{3}(mu)=mu u_{g_{1}}+ (1-mu)u_{g_{2}}$ %(the convex combination of two solutions) and $u_{4}(mu)=u_{mu g_{1}+ (1-mu ) g_{2}}$ %(the solution corresponding to the convex combination of two data) for $muin [0 , 1]$. Secondly, we consider a family of distributed optimal control problems governed by elliptic variational inequalities over the internal energy $g$ for each positive heat transfer coefficient $h$ given on a part of the boundary of the domain. For a given cost functional and using some monotony property between $u_{3}(mu)$ and $u_{4}(mu)$ given in F. Mignot, J. Funct. Anal., 22 (1976), 130-185, we prove the strong convergence of the optimal controls and states associated to this family of distributed optimal control problems governed by elliptic variational inequalities to a limit Dirichlet distributed optimal control problem, governed also by an elliptic variational inequality, when the parameter $h$ goes to infinity. We obtain this convergence without using the adjoint state problem (or the Mignot´s conical differentiability) which is a great advantage with respect to the proof given in C.M. Gariboldi - D.A. Tarzia, Appl. Math. Optim., 47 (2003), 213-230, for optimal control problems governed by elliptic variational equalities.
Fil: Boukrouche, Mahdi. No especifíca;
Fil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
CONVERGENCE OF THE OPTIMAL CONTROLS
CONVEX COMBINATIONS OF THE SOLUTIONS
DISTRIBUTED OPTIMAL CONTROL PROBLEMS
ELLIPTIC VARIATIONAL INEQUALITIES
FREE BOUNDARY PROBLEMS
OBSTACLE PROBLEM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/196650
Ver los metadatos del registro completo
id |
CONICETDig_d0020a96edcf1daf95cc0f53ea50e75d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/196650 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Convergence of distributed optimal control problems governed by elliptic variational inequalitiesBoukrouche, MahdiTarzia, Domingo AlbertoCONVERGENCE OF THE OPTIMAL CONTROLSCONVEX COMBINATIONS OF THE SOLUTIONSDISTRIBUTED OPTIMAL CONTROL PROBLEMSELLIPTIC VARIATIONAL INEQUALITIESFREE BOUNDARY PROBLEMSOBSTACLE PROBLEMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1First, let $u_{g}$ be the unique solution of an elliptic variational inequality with source term $g$. We establish, in the general case, the error estimate between $u_{3}(mu)=mu u_{g_{1}}+ (1-mu)u_{g_{2}}$ %(the convex combination of two solutions) and $u_{4}(mu)=u_{mu g_{1}+ (1-mu ) g_{2}}$ %(the solution corresponding to the convex combination of two data) for $muin [0 , 1]$. Secondly, we consider a family of distributed optimal control problems governed by elliptic variational inequalities over the internal energy $g$ for each positive heat transfer coefficient $h$ given on a part of the boundary of the domain. For a given cost functional and using some monotony property between $u_{3}(mu)$ and $u_{4}(mu)$ given in F. Mignot, J. Funct. Anal., 22 (1976), 130-185, we prove the strong convergence of the optimal controls and states associated to this family of distributed optimal control problems governed by elliptic variational inequalities to a limit Dirichlet distributed optimal control problem, governed also by an elliptic variational inequality, when the parameter $h$ goes to infinity. We obtain this convergence without using the adjoint state problem (or the Mignot´s conical differentiability) which is a great advantage with respect to the proof given in C.M. Gariboldi - D.A. Tarzia, Appl. Math. Optim., 47 (2003), 213-230, for optimal control problems governed by elliptic variational equalities.Fil: Boukrouche, Mahdi. No especifíca;Fil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/196650Boukrouche, Mahdi; Tarzia, Domingo Alberto; Convergence of distributed optimal control problems governed by elliptic variational inequalities; Springer; Computational Optimization And Applications; 53; 2; 12-2012; 375-3930926-6003CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10589-011-9438-7info:eu-repo/semantics/altIdentifier/doi/10.1007/s10589-011-9438-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:30Zoai:ri.conicet.gov.ar:11336/196650instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:30.767CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Convergence of distributed optimal control problems governed by elliptic variational inequalities |
title |
Convergence of distributed optimal control problems governed by elliptic variational inequalities |
spellingShingle |
Convergence of distributed optimal control problems governed by elliptic variational inequalities Boukrouche, Mahdi CONVERGENCE OF THE OPTIMAL CONTROLS CONVEX COMBINATIONS OF THE SOLUTIONS DISTRIBUTED OPTIMAL CONTROL PROBLEMS ELLIPTIC VARIATIONAL INEQUALITIES FREE BOUNDARY PROBLEMS OBSTACLE PROBLEM |
title_short |
Convergence of distributed optimal control problems governed by elliptic variational inequalities |
title_full |
Convergence of distributed optimal control problems governed by elliptic variational inequalities |
title_fullStr |
Convergence of distributed optimal control problems governed by elliptic variational inequalities |
title_full_unstemmed |
Convergence of distributed optimal control problems governed by elliptic variational inequalities |
title_sort |
Convergence of distributed optimal control problems governed by elliptic variational inequalities |
dc.creator.none.fl_str_mv |
Boukrouche, Mahdi Tarzia, Domingo Alberto |
author |
Boukrouche, Mahdi |
author_facet |
Boukrouche, Mahdi Tarzia, Domingo Alberto |
author_role |
author |
author2 |
Tarzia, Domingo Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
CONVERGENCE OF THE OPTIMAL CONTROLS CONVEX COMBINATIONS OF THE SOLUTIONS DISTRIBUTED OPTIMAL CONTROL PROBLEMS ELLIPTIC VARIATIONAL INEQUALITIES FREE BOUNDARY PROBLEMS OBSTACLE PROBLEM |
topic |
CONVERGENCE OF THE OPTIMAL CONTROLS CONVEX COMBINATIONS OF THE SOLUTIONS DISTRIBUTED OPTIMAL CONTROL PROBLEMS ELLIPTIC VARIATIONAL INEQUALITIES FREE BOUNDARY PROBLEMS OBSTACLE PROBLEM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
First, let $u_{g}$ be the unique solution of an elliptic variational inequality with source term $g$. We establish, in the general case, the error estimate between $u_{3}(mu)=mu u_{g_{1}}+ (1-mu)u_{g_{2}}$ %(the convex combination of two solutions) and $u_{4}(mu)=u_{mu g_{1}+ (1-mu ) g_{2}}$ %(the solution corresponding to the convex combination of two data) for $muin [0 , 1]$. Secondly, we consider a family of distributed optimal control problems governed by elliptic variational inequalities over the internal energy $g$ for each positive heat transfer coefficient $h$ given on a part of the boundary of the domain. For a given cost functional and using some monotony property between $u_{3}(mu)$ and $u_{4}(mu)$ given in F. Mignot, J. Funct. Anal., 22 (1976), 130-185, we prove the strong convergence of the optimal controls and states associated to this family of distributed optimal control problems governed by elliptic variational inequalities to a limit Dirichlet distributed optimal control problem, governed also by an elliptic variational inequality, when the parameter $h$ goes to infinity. We obtain this convergence without using the adjoint state problem (or the Mignot´s conical differentiability) which is a great advantage with respect to the proof given in C.M. Gariboldi - D.A. Tarzia, Appl. Math. Optim., 47 (2003), 213-230, for optimal control problems governed by elliptic variational equalities. Fil: Boukrouche, Mahdi. No especifíca; Fil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
First, let $u_{g}$ be the unique solution of an elliptic variational inequality with source term $g$. We establish, in the general case, the error estimate between $u_{3}(mu)=mu u_{g_{1}}+ (1-mu)u_{g_{2}}$ %(the convex combination of two solutions) and $u_{4}(mu)=u_{mu g_{1}+ (1-mu ) g_{2}}$ %(the solution corresponding to the convex combination of two data) for $muin [0 , 1]$. Secondly, we consider a family of distributed optimal control problems governed by elliptic variational inequalities over the internal energy $g$ for each positive heat transfer coefficient $h$ given on a part of the boundary of the domain. For a given cost functional and using some monotony property between $u_{3}(mu)$ and $u_{4}(mu)$ given in F. Mignot, J. Funct. Anal., 22 (1976), 130-185, we prove the strong convergence of the optimal controls and states associated to this family of distributed optimal control problems governed by elliptic variational inequalities to a limit Dirichlet distributed optimal control problem, governed also by an elliptic variational inequality, when the parameter $h$ goes to infinity. We obtain this convergence without using the adjoint state problem (or the Mignot´s conical differentiability) which is a great advantage with respect to the proof given in C.M. Gariboldi - D.A. Tarzia, Appl. Math. Optim., 47 (2003), 213-230, for optimal control problems governed by elliptic variational equalities. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/196650 Boukrouche, Mahdi; Tarzia, Domingo Alberto; Convergence of distributed optimal control problems governed by elliptic variational inequalities; Springer; Computational Optimization And Applications; 53; 2; 12-2012; 375-393 0926-6003 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/196650 |
identifier_str_mv |
Boukrouche, Mahdi; Tarzia, Domingo Alberto; Convergence of distributed optimal control problems governed by elliptic variational inequalities; Springer; Computational Optimization And Applications; 53; 2; 12-2012; 375-393 0926-6003 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10589-011-9438-7 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10589-011-9438-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269961559474176 |
score |
13.13397 |