Convergence of distributed optimal control problems governed by elliptic variational inequalities

Autores
Boukrouche, Mahdi; Tarzia, Domingo Alberto
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
First, let $u_{g}$ be the unique solution of an  elliptic variational inequality with source term  $g$. We establish, in the general case, the error estimate  between $u_{3}(mu)=mu u_{g_{1}}+ (1-mu)u_{g_{2}}$ %(the convex combination of two solutions) and $u_{4}(mu)=u_{mu g_{1}+ (1-mu ) g_{2}}$ %(the solution corresponding to the convex combination of two data) for $muin [0 , 1]$. Secondly, we consider a family of distributed optimal control problems governed by elliptic variational inequalities over the internal energy $g$ for each positive heat transfer coefficient $h$ given on a part of the boundary of the domain. For a given  cost functional and using some monotony property between $u_{3}(mu)$ and $u_{4}(mu)$ given in F. Mignot, J. Funct. Anal., 22 (1976), 130-185, we prove the strong convergence of the optimal controls and states associated to this family of distributed optimal control problems governed by elliptic variational inequalities to a limit Dirichlet distributed optimal control problem, governed also by an elliptic variational inequality, when the parameter $h$ goes to infinity. We obtain this convergence without using the adjoint state problem (or the Mignot´s conical differentiability) which is a great advantage with respect to the proof given in C.M. Gariboldi - D.A. Tarzia, Appl. Math. Optim., 47 (2003), 213-230, for optimal control problems governed by elliptic variational equalities.
Fil: Boukrouche, Mahdi. No especifíca;
Fil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
CONVERGENCE OF THE OPTIMAL CONTROLS
CONVEX COMBINATIONS OF THE SOLUTIONS
DISTRIBUTED OPTIMAL CONTROL PROBLEMS
ELLIPTIC VARIATIONAL INEQUALITIES
FREE BOUNDARY PROBLEMS
OBSTACLE PROBLEM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/196650

id CONICETDig_d0020a96edcf1daf95cc0f53ea50e75d
oai_identifier_str oai:ri.conicet.gov.ar:11336/196650
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Convergence of distributed optimal control problems governed by elliptic variational inequalitiesBoukrouche, MahdiTarzia, Domingo AlbertoCONVERGENCE OF THE OPTIMAL CONTROLSCONVEX COMBINATIONS OF THE SOLUTIONSDISTRIBUTED OPTIMAL CONTROL PROBLEMSELLIPTIC VARIATIONAL INEQUALITIESFREE BOUNDARY PROBLEMSOBSTACLE PROBLEMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1First, let $u_{g}$ be the unique solution of an  elliptic variational inequality with source term  $g$. We establish, in the general case, the error estimate  between $u_{3}(mu)=mu u_{g_{1}}+ (1-mu)u_{g_{2}}$ %(the convex combination of two solutions) and $u_{4}(mu)=u_{mu g_{1}+ (1-mu ) g_{2}}$ %(the solution corresponding to the convex combination of two data) for $muin [0 , 1]$. Secondly, we consider a family of distributed optimal control problems governed by elliptic variational inequalities over the internal energy $g$ for each positive heat transfer coefficient $h$ given on a part of the boundary of the domain. For a given  cost functional and using some monotony property between $u_{3}(mu)$ and $u_{4}(mu)$ given in F. Mignot, J. Funct. Anal., 22 (1976), 130-185, we prove the strong convergence of the optimal controls and states associated to this family of distributed optimal control problems governed by elliptic variational inequalities to a limit Dirichlet distributed optimal control problem, governed also by an elliptic variational inequality, when the parameter $h$ goes to infinity. We obtain this convergence without using the adjoint state problem (or the Mignot´s conical differentiability) which is a great advantage with respect to the proof given in C.M. Gariboldi - D.A. Tarzia, Appl. Math. Optim., 47 (2003), 213-230, for optimal control problems governed by elliptic variational equalities.Fil: Boukrouche, Mahdi. No especifíca;Fil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/196650Boukrouche, Mahdi; Tarzia, Domingo Alberto; Convergence of distributed optimal control problems governed by elliptic variational inequalities; Springer; Computational Optimization And Applications; 53; 2; 12-2012; 375-3930926-6003CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10589-011-9438-7info:eu-repo/semantics/altIdentifier/doi/10.1007/s10589-011-9438-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:30Zoai:ri.conicet.gov.ar:11336/196650instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:30.767CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Convergence of distributed optimal control problems governed by elliptic variational inequalities
title Convergence of distributed optimal control problems governed by elliptic variational inequalities
spellingShingle Convergence of distributed optimal control problems governed by elliptic variational inequalities
Boukrouche, Mahdi
CONVERGENCE OF THE OPTIMAL CONTROLS
CONVEX COMBINATIONS OF THE SOLUTIONS
DISTRIBUTED OPTIMAL CONTROL PROBLEMS
ELLIPTIC VARIATIONAL INEQUALITIES
FREE BOUNDARY PROBLEMS
OBSTACLE PROBLEM
title_short Convergence of distributed optimal control problems governed by elliptic variational inequalities
title_full Convergence of distributed optimal control problems governed by elliptic variational inequalities
title_fullStr Convergence of distributed optimal control problems governed by elliptic variational inequalities
title_full_unstemmed Convergence of distributed optimal control problems governed by elliptic variational inequalities
title_sort Convergence of distributed optimal control problems governed by elliptic variational inequalities
dc.creator.none.fl_str_mv Boukrouche, Mahdi
Tarzia, Domingo Alberto
author Boukrouche, Mahdi
author_facet Boukrouche, Mahdi
Tarzia, Domingo Alberto
author_role author
author2 Tarzia, Domingo Alberto
author2_role author
dc.subject.none.fl_str_mv CONVERGENCE OF THE OPTIMAL CONTROLS
CONVEX COMBINATIONS OF THE SOLUTIONS
DISTRIBUTED OPTIMAL CONTROL PROBLEMS
ELLIPTIC VARIATIONAL INEQUALITIES
FREE BOUNDARY PROBLEMS
OBSTACLE PROBLEM
topic CONVERGENCE OF THE OPTIMAL CONTROLS
CONVEX COMBINATIONS OF THE SOLUTIONS
DISTRIBUTED OPTIMAL CONTROL PROBLEMS
ELLIPTIC VARIATIONAL INEQUALITIES
FREE BOUNDARY PROBLEMS
OBSTACLE PROBLEM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv First, let $u_{g}$ be the unique solution of an  elliptic variational inequality with source term  $g$. We establish, in the general case, the error estimate  between $u_{3}(mu)=mu u_{g_{1}}+ (1-mu)u_{g_{2}}$ %(the convex combination of two solutions) and $u_{4}(mu)=u_{mu g_{1}+ (1-mu ) g_{2}}$ %(the solution corresponding to the convex combination of two data) for $muin [0 , 1]$. Secondly, we consider a family of distributed optimal control problems governed by elliptic variational inequalities over the internal energy $g$ for each positive heat transfer coefficient $h$ given on a part of the boundary of the domain. For a given  cost functional and using some monotony property between $u_{3}(mu)$ and $u_{4}(mu)$ given in F. Mignot, J. Funct. Anal., 22 (1976), 130-185, we prove the strong convergence of the optimal controls and states associated to this family of distributed optimal control problems governed by elliptic variational inequalities to a limit Dirichlet distributed optimal control problem, governed also by an elliptic variational inequality, when the parameter $h$ goes to infinity. We obtain this convergence without using the adjoint state problem (or the Mignot´s conical differentiability) which is a great advantage with respect to the proof given in C.M. Gariboldi - D.A. Tarzia, Appl. Math. Optim., 47 (2003), 213-230, for optimal control problems governed by elliptic variational equalities.
Fil: Boukrouche, Mahdi. No especifíca;
Fil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description First, let $u_{g}$ be the unique solution of an  elliptic variational inequality with source term  $g$. We establish, in the general case, the error estimate  between $u_{3}(mu)=mu u_{g_{1}}+ (1-mu)u_{g_{2}}$ %(the convex combination of two solutions) and $u_{4}(mu)=u_{mu g_{1}+ (1-mu ) g_{2}}$ %(the solution corresponding to the convex combination of two data) for $muin [0 , 1]$. Secondly, we consider a family of distributed optimal control problems governed by elliptic variational inequalities over the internal energy $g$ for each positive heat transfer coefficient $h$ given on a part of the boundary of the domain. For a given  cost functional and using some monotony property between $u_{3}(mu)$ and $u_{4}(mu)$ given in F. Mignot, J. Funct. Anal., 22 (1976), 130-185, we prove the strong convergence of the optimal controls and states associated to this family of distributed optimal control problems governed by elliptic variational inequalities to a limit Dirichlet distributed optimal control problem, governed also by an elliptic variational inequality, when the parameter $h$ goes to infinity. We obtain this convergence without using the adjoint state problem (or the Mignot´s conical differentiability) which is a great advantage with respect to the proof given in C.M. Gariboldi - D.A. Tarzia, Appl. Math. Optim., 47 (2003), 213-230, for optimal control problems governed by elliptic variational equalities.
publishDate 2012
dc.date.none.fl_str_mv 2012-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/196650
Boukrouche, Mahdi; Tarzia, Domingo Alberto; Convergence of distributed optimal control problems governed by elliptic variational inequalities; Springer; Computational Optimization And Applications; 53; 2; 12-2012; 375-393
0926-6003
CONICET Digital
CONICET
url http://hdl.handle.net/11336/196650
identifier_str_mv Boukrouche, Mahdi; Tarzia, Domingo Alberto; Convergence of distributed optimal control problems governed by elliptic variational inequalities; Springer; Computational Optimization And Applications; 53; 2; 12-2012; 375-393
0926-6003
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10589-011-9438-7
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10589-011-9438-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269961559474176
score 13.13397