Numerical Analysis of a Distributed Optimal Control Problem Governed by an Elliptic Variational Inequality
- Autores
- Olguin, Mariela Carina; Tarzia, Domingo Alberto
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The objective of this work is to make the numerical analysis, through the finite element method with Lagrange's triangles of type 1, of a continuous optimal control problem governed by an elliptic variational inequality where the control variable is the internal energy g. The existence and uniqueness of this continuous optimal control problem and its associated state system were proved previously. In this paper, we discretize the elliptic variational inequality which defines the state system and the corresponding cost functional, and we prove that there exist a discrete optimal control and its associated discrete state system for each positive h (the parameter of the finite element method approximation). Finally, we show that the discrete optimal control and its associated state system converge to the continuous optimal control and its associated state system when the parameter h goes to zero.
Fil: Olguin, Mariela Carina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; Argentina - Materia
-
Optimal control
Numerical analysis
Elliptic variational inequalities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/52974
Ver los metadatos del registro completo
id |
CONICETDig_f154faf4c7378a949e2eb2723a47d22e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/52974 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Numerical Analysis of a Distributed Optimal Control Problem Governed by an Elliptic Variational InequalityOlguin, Mariela CarinaTarzia, Domingo AlbertoOptimal controlNumerical analysisElliptic variational inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The objective of this work is to make the numerical analysis, through the finite element method with Lagrange's triangles of type 1, of a continuous optimal control problem governed by an elliptic variational inequality where the control variable is the internal energy g. The existence and uniqueness of this continuous optimal control problem and its associated state system were proved previously. In this paper, we discretize the elliptic variational inequality which defines the state system and the corresponding cost functional, and we prove that there exist a discrete optimal control and its associated discrete state system for each positive h (the parameter of the finite element method approximation). Finally, we show that the discrete optimal control and its associated state system converge to the continuous optimal control and its associated state system when the parameter h goes to zero.Fil: Olguin, Mariela Carina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; ArgentinaHindawi Publishing Corporation2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52974Olguin, Mariela Carina; Tarzia, Domingo Alberto; Numerical Analysis of a Distributed Optimal Control Problem Governed by an Elliptic Variational Inequality; Hindawi Publishing Corporation; International Journal of Differential Equations; 2015; 9-2015; 1-71687-9651CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1155/2015/407930info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/ijde/2015/407930/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:25:03Zoai:ri.conicet.gov.ar:11336/52974instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:25:04.105CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Numerical Analysis of a Distributed Optimal Control Problem Governed by an Elliptic Variational Inequality |
title |
Numerical Analysis of a Distributed Optimal Control Problem Governed by an Elliptic Variational Inequality |
spellingShingle |
Numerical Analysis of a Distributed Optimal Control Problem Governed by an Elliptic Variational Inequality Olguin, Mariela Carina Optimal control Numerical analysis Elliptic variational inequalities |
title_short |
Numerical Analysis of a Distributed Optimal Control Problem Governed by an Elliptic Variational Inequality |
title_full |
Numerical Analysis of a Distributed Optimal Control Problem Governed by an Elliptic Variational Inequality |
title_fullStr |
Numerical Analysis of a Distributed Optimal Control Problem Governed by an Elliptic Variational Inequality |
title_full_unstemmed |
Numerical Analysis of a Distributed Optimal Control Problem Governed by an Elliptic Variational Inequality |
title_sort |
Numerical Analysis of a Distributed Optimal Control Problem Governed by an Elliptic Variational Inequality |
dc.creator.none.fl_str_mv |
Olguin, Mariela Carina Tarzia, Domingo Alberto |
author |
Olguin, Mariela Carina |
author_facet |
Olguin, Mariela Carina Tarzia, Domingo Alberto |
author_role |
author |
author2 |
Tarzia, Domingo Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
Optimal control Numerical analysis Elliptic variational inequalities |
topic |
Optimal control Numerical analysis Elliptic variational inequalities |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The objective of this work is to make the numerical analysis, through the finite element method with Lagrange's triangles of type 1, of a continuous optimal control problem governed by an elliptic variational inequality where the control variable is the internal energy g. The existence and uniqueness of this continuous optimal control problem and its associated state system were proved previously. In this paper, we discretize the elliptic variational inequality which defines the state system and the corresponding cost functional, and we prove that there exist a discrete optimal control and its associated discrete state system for each positive h (the parameter of the finite element method approximation). Finally, we show that the discrete optimal control and its associated state system converge to the continuous optimal control and its associated state system when the parameter h goes to zero. Fil: Olguin, Mariela Carina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; Argentina |
description |
The objective of this work is to make the numerical analysis, through the finite element method with Lagrange's triangles of type 1, of a continuous optimal control problem governed by an elliptic variational inequality where the control variable is the internal energy g. The existence and uniqueness of this continuous optimal control problem and its associated state system were proved previously. In this paper, we discretize the elliptic variational inequality which defines the state system and the corresponding cost functional, and we prove that there exist a discrete optimal control and its associated discrete state system for each positive h (the parameter of the finite element method approximation). Finally, we show that the discrete optimal control and its associated state system converge to the continuous optimal control and its associated state system when the parameter h goes to zero. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/52974 Olguin, Mariela Carina; Tarzia, Domingo Alberto; Numerical Analysis of a Distributed Optimal Control Problem Governed by an Elliptic Variational Inequality; Hindawi Publishing Corporation; International Journal of Differential Equations; 2015; 9-2015; 1-7 1687-9651 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/52974 |
identifier_str_mv |
Olguin, Mariela Carina; Tarzia, Domingo Alberto; Numerical Analysis of a Distributed Optimal Control Problem Governed by an Elliptic Variational Inequality; Hindawi Publishing Corporation; International Journal of Differential Equations; 2015; 9-2015; 1-7 1687-9651 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1155/2015/407930 info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/ijde/2015/407930/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082680164188160 |
score |
13.22299 |