A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces
- Autores
- Sofonea, Mircea; Tarzia, Domingo Alberto
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Here, we consider a stationary inclusion in a real Hilbert space X, governed by a set ofconstraints K, a nonlinear operator A, and an element f ∈ X. Under appropriate assumptions on thedata, the inclusion has a unique solution, denoted by u. We state and prove a covergence criterion,i.e., we provide necessary and sufficient conditions on a sequence {un} ⊂ X, which guarantee itsconvergence to the solution u. We then present several applications that provide the continuousdependence of the solution with respect to the data K, A and f on the one hand, and the convergenceof an associate penalty problem on the other hand. We use these abstract results in the study of africtional contact problem with elastic materials that, in a weak formulation, leads to a stationaryinclusion for the deformation field. Finally, we apply the abstract penalty method in the analysis oftwo nonlinear elastic constitutive laws.
Fil: Sofonea, Mircea. University of Perpignan; Francia
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
STATIONARY INCLUSION
CONVERGENCE CRITERION
PENALTY METHOD
FRICTIONAL CONTACT PROBLEM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/231163
Ver los metadatos del registro completo
id |
CONICETDig_4c35ee3fb06f72cb82e6963e2be4ca2f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/231163 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Convergence Criterion for a Class of Stationary Inclusions in Hilbert SpacesSofonea, MirceaTarzia, Domingo AlbertoSTATIONARY INCLUSIONCONVERGENCE CRITERIONPENALTY METHODFRICTIONAL CONTACT PROBLEMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Here, we consider a stationary inclusion in a real Hilbert space X, governed by a set ofconstraints K, a nonlinear operator A, and an element f ∈ X. Under appropriate assumptions on thedata, the inclusion has a unique solution, denoted by u. We state and prove a covergence criterion,i.e., we provide necessary and sufficient conditions on a sequence {un} ⊂ X, which guarantee itsconvergence to the solution u. We then present several applications that provide the continuousdependence of the solution with respect to the data K, A and f on the one hand, and the convergenceof an associate penalty problem on the other hand. We use these abstract results in the study of africtional contact problem with elastic materials that, in a weak formulation, leads to a stationaryinclusion for the deformation field. Finally, we apply the abstract penalty method in the analysis oftwo nonlinear elastic constitutive laws.Fil: Sofonea, Mircea. University of Perpignan; FranciaFil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMDPI2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231163Sofonea, Mircea; Tarzia, Domingo Alberto; A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces; MDPI; Axioms; 13; 1; 1-2024; 1-182075-1680CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-1680/13/1/52info:eu-repo/semantics/altIdentifier/doi/10.3390/axioms13010052info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:03Zoai:ri.conicet.gov.ar:11336/231163instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:03.588CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces |
title |
A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces |
spellingShingle |
A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces Sofonea, Mircea STATIONARY INCLUSION CONVERGENCE CRITERION PENALTY METHOD FRICTIONAL CONTACT PROBLEM |
title_short |
A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces |
title_full |
A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces |
title_fullStr |
A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces |
title_full_unstemmed |
A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces |
title_sort |
A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces |
dc.creator.none.fl_str_mv |
Sofonea, Mircea Tarzia, Domingo Alberto |
author |
Sofonea, Mircea |
author_facet |
Sofonea, Mircea Tarzia, Domingo Alberto |
author_role |
author |
author2 |
Tarzia, Domingo Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
STATIONARY INCLUSION CONVERGENCE CRITERION PENALTY METHOD FRICTIONAL CONTACT PROBLEM |
topic |
STATIONARY INCLUSION CONVERGENCE CRITERION PENALTY METHOD FRICTIONAL CONTACT PROBLEM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Here, we consider a stationary inclusion in a real Hilbert space X, governed by a set ofconstraints K, a nonlinear operator A, and an element f ∈ X. Under appropriate assumptions on thedata, the inclusion has a unique solution, denoted by u. We state and prove a covergence criterion,i.e., we provide necessary and sufficient conditions on a sequence {un} ⊂ X, which guarantee itsconvergence to the solution u. We then present several applications that provide the continuousdependence of the solution with respect to the data K, A and f on the one hand, and the convergenceof an associate penalty problem on the other hand. We use these abstract results in the study of africtional contact problem with elastic materials that, in a weak formulation, leads to a stationaryinclusion for the deformation field. Finally, we apply the abstract penalty method in the analysis oftwo nonlinear elastic constitutive laws. Fil: Sofonea, Mircea. University of Perpignan; Francia Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Here, we consider a stationary inclusion in a real Hilbert space X, governed by a set ofconstraints K, a nonlinear operator A, and an element f ∈ X. Under appropriate assumptions on thedata, the inclusion has a unique solution, denoted by u. We state and prove a covergence criterion,i.e., we provide necessary and sufficient conditions on a sequence {un} ⊂ X, which guarantee itsconvergence to the solution u. We then present several applications that provide the continuousdependence of the solution with respect to the data K, A and f on the one hand, and the convergenceof an associate penalty problem on the other hand. We use these abstract results in the study of africtional contact problem with elastic materials that, in a weak formulation, leads to a stationaryinclusion for the deformation field. Finally, we apply the abstract penalty method in the analysis oftwo nonlinear elastic constitutive laws. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/231163 Sofonea, Mircea; Tarzia, Domingo Alberto; A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces; MDPI; Axioms; 13; 1; 1-2024; 1-18 2075-1680 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/231163 |
identifier_str_mv |
Sofonea, Mircea; Tarzia, Domingo Alberto; A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces; MDPI; Axioms; 13; 1; 1-2024; 1-18 2075-1680 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-1680/13/1/52 info:eu-repo/semantics/altIdentifier/doi/10.3390/axioms13010052 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269558098886656 |
score |
13.13397 |