A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces

Autores
Sofonea, Mircea; Tarzia, Domingo Alberto
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Here, we consider a stationary inclusion in a real Hilbert space X, governed by a set ofconstraints K, a nonlinear operator A, and an element f ∈ X. Under appropriate assumptions on thedata, the inclusion has a unique solution, denoted by u. We state and prove a covergence criterion,i.e., we provide necessary and sufficient conditions on a sequence {un} ⊂ X, which guarantee itsconvergence to the solution u. We then present several applications that provide the continuousdependence of the solution with respect to the data K, A and f on the one hand, and the convergenceof an associate penalty problem on the other hand. We use these abstract results in the study of africtional contact problem with elastic materials that, in a weak formulation, leads to a stationaryinclusion for the deformation field. Finally, we apply the abstract penalty method in the analysis oftwo nonlinear elastic constitutive laws.
Fil: Sofonea, Mircea. University of Perpignan; Francia
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
STATIONARY INCLUSION
CONVERGENCE CRITERION
PENALTY METHOD
FRICTIONAL CONTACT PROBLEM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/231163

id CONICETDig_4c35ee3fb06f72cb82e6963e2be4ca2f
oai_identifier_str oai:ri.conicet.gov.ar:11336/231163
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Convergence Criterion for a Class of Stationary Inclusions in Hilbert SpacesSofonea, MirceaTarzia, Domingo AlbertoSTATIONARY INCLUSIONCONVERGENCE CRITERIONPENALTY METHODFRICTIONAL CONTACT PROBLEMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Here, we consider a stationary inclusion in a real Hilbert space X, governed by a set ofconstraints K, a nonlinear operator A, and an element f ∈ X. Under appropriate assumptions on thedata, the inclusion has a unique solution, denoted by u. We state and prove a covergence criterion,i.e., we provide necessary and sufficient conditions on a sequence {un} ⊂ X, which guarantee itsconvergence to the solution u. We then present several applications that provide the continuousdependence of the solution with respect to the data K, A and f on the one hand, and the convergenceof an associate penalty problem on the other hand. We use these abstract results in the study of africtional contact problem with elastic materials that, in a weak formulation, leads to a stationaryinclusion for the deformation field. Finally, we apply the abstract penalty method in the analysis oftwo nonlinear elastic constitutive laws.Fil: Sofonea, Mircea. University of Perpignan; FranciaFil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMDPI2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231163Sofonea, Mircea; Tarzia, Domingo Alberto; A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces; MDPI; Axioms; 13; 1; 1-2024; 1-182075-1680CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-1680/13/1/52info:eu-repo/semantics/altIdentifier/doi/10.3390/axioms13010052info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:03Zoai:ri.conicet.gov.ar:11336/231163instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:03.588CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces
title A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces
spellingShingle A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces
Sofonea, Mircea
STATIONARY INCLUSION
CONVERGENCE CRITERION
PENALTY METHOD
FRICTIONAL CONTACT PROBLEM
title_short A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces
title_full A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces
title_fullStr A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces
title_full_unstemmed A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces
title_sort A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces
dc.creator.none.fl_str_mv Sofonea, Mircea
Tarzia, Domingo Alberto
author Sofonea, Mircea
author_facet Sofonea, Mircea
Tarzia, Domingo Alberto
author_role author
author2 Tarzia, Domingo Alberto
author2_role author
dc.subject.none.fl_str_mv STATIONARY INCLUSION
CONVERGENCE CRITERION
PENALTY METHOD
FRICTIONAL CONTACT PROBLEM
topic STATIONARY INCLUSION
CONVERGENCE CRITERION
PENALTY METHOD
FRICTIONAL CONTACT PROBLEM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Here, we consider a stationary inclusion in a real Hilbert space X, governed by a set ofconstraints K, a nonlinear operator A, and an element f ∈ X. Under appropriate assumptions on thedata, the inclusion has a unique solution, denoted by u. We state and prove a covergence criterion,i.e., we provide necessary and sufficient conditions on a sequence {un} ⊂ X, which guarantee itsconvergence to the solution u. We then present several applications that provide the continuousdependence of the solution with respect to the data K, A and f on the one hand, and the convergenceof an associate penalty problem on the other hand. We use these abstract results in the study of africtional contact problem with elastic materials that, in a weak formulation, leads to a stationaryinclusion for the deformation field. Finally, we apply the abstract penalty method in the analysis oftwo nonlinear elastic constitutive laws.
Fil: Sofonea, Mircea. University of Perpignan; Francia
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Here, we consider a stationary inclusion in a real Hilbert space X, governed by a set ofconstraints K, a nonlinear operator A, and an element f ∈ X. Under appropriate assumptions on thedata, the inclusion has a unique solution, denoted by u. We state and prove a covergence criterion,i.e., we provide necessary and sufficient conditions on a sequence {un} ⊂ X, which guarantee itsconvergence to the solution u. We then present several applications that provide the continuousdependence of the solution with respect to the data K, A and f on the one hand, and the convergenceof an associate penalty problem on the other hand. We use these abstract results in the study of africtional contact problem with elastic materials that, in a weak formulation, leads to a stationaryinclusion for the deformation field. Finally, we apply the abstract penalty method in the analysis oftwo nonlinear elastic constitutive laws.
publishDate 2024
dc.date.none.fl_str_mv 2024-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/231163
Sofonea, Mircea; Tarzia, Domingo Alberto; A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces; MDPI; Axioms; 13; 1; 1-2024; 1-18
2075-1680
CONICET Digital
CONICET
url http://hdl.handle.net/11336/231163
identifier_str_mv Sofonea, Mircea; Tarzia, Domingo Alberto; A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces; MDPI; Axioms; 13; 1; 1-2024; 1-18
2075-1680
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-1680/13/1/52
info:eu-repo/semantics/altIdentifier/doi/10.3390/axioms13010052
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269558098886656
score 13.13397