A Penalty Method for Elliptic Variational–Hemivariational Inequalities
- Autores
- Sofonea, Mircea; Tarzia, Domingo Alberto
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider an elliptic variational–hemivariational inequality in a real reflexive Banach space, governed by a set of constraints K. Under appropriate assumptions of the data, this inequality has a unique solution ∈ . We associate inequality to a sequence of elliptic variational–hemivariational inequalities {} , governed by a set of constraints ̃⊃ , a sequence of parameters {}⊂ℝ+ , and a function . We prove that if, for each ∈ℕ , the element ∈̃ represents a solution to Problem , then the sequence {} converges to u as →0 . Based on this general result, we recover convergence results for various associated penalty methods previously obtained in the literature. These convergence results are obtained by considering particular choices of the set ̃ and the function . The corresponding penalty methods can be applied in the study of various inequality problems. To provide an example, we consider a purely hemivariational inequality that describes the equilibrium of an elastic membrane in contact with an obstacle, the so-called foundation.
Fil: Sofonea, Mircea. Université de Perpignan Via Domitia; Italia
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina - Materia
-
Penalty method
Elliptic Variational-Hemivariational inequalities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/268980
Ver los metadatos del registro completo
id |
CONICETDig_0702be2696ee66f1dc8f2780bdc84624 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/268980 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Penalty Method for Elliptic Variational–Hemivariational InequalitiesSofonea, MirceaTarzia, Domingo AlbertoPenalty methodElliptic Variational-Hemivariational inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider an elliptic variational–hemivariational inequality in a real reflexive Banach space, governed by a set of constraints K. Under appropriate assumptions of the data, this inequality has a unique solution ∈ . We associate inequality to a sequence of elliptic variational–hemivariational inequalities {} , governed by a set of constraints ̃⊃ , a sequence of parameters {}⊂ℝ+ , and a function . We prove that if, for each ∈ℕ , the element ∈̃ represents a solution to Problem , then the sequence {} converges to u as →0 . Based on this general result, we recover convergence results for various associated penalty methods previously obtained in the literature. These convergence results are obtained by considering particular choices of the set ̃ and the function . The corresponding penalty methods can be applied in the study of various inequality problems. To provide an example, we consider a purely hemivariational inequality that describes the equilibrium of an elastic membrane in contact with an obstacle, the so-called foundation.Fil: Sofonea, Mircea. Université de Perpignan Via Domitia; ItaliaFil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaMultidisciplinary Digital Publishing Institute2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/268980Sofonea, Mircea; Tarzia, Domingo Alberto; A Penalty Method for Elliptic Variational–Hemivariational Inequalities; Multidisciplinary Digital Publishing Institute; Axioms; 13; 10; 10-2024; 1-172075-1680CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-1680/13/10/721info:eu-repo/semantics/altIdentifier/doi/10.3390/axioms13100721info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:17Zoai:ri.conicet.gov.ar:11336/268980instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:17.601CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Penalty Method for Elliptic Variational–Hemivariational Inequalities |
title |
A Penalty Method for Elliptic Variational–Hemivariational Inequalities |
spellingShingle |
A Penalty Method for Elliptic Variational–Hemivariational Inequalities Sofonea, Mircea Penalty method Elliptic Variational-Hemivariational inequalities |
title_short |
A Penalty Method for Elliptic Variational–Hemivariational Inequalities |
title_full |
A Penalty Method for Elliptic Variational–Hemivariational Inequalities |
title_fullStr |
A Penalty Method for Elliptic Variational–Hemivariational Inequalities |
title_full_unstemmed |
A Penalty Method for Elliptic Variational–Hemivariational Inequalities |
title_sort |
A Penalty Method for Elliptic Variational–Hemivariational Inequalities |
dc.creator.none.fl_str_mv |
Sofonea, Mircea Tarzia, Domingo Alberto |
author |
Sofonea, Mircea |
author_facet |
Sofonea, Mircea Tarzia, Domingo Alberto |
author_role |
author |
author2 |
Tarzia, Domingo Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
Penalty method Elliptic Variational-Hemivariational inequalities |
topic |
Penalty method Elliptic Variational-Hemivariational inequalities |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider an elliptic variational–hemivariational inequality in a real reflexive Banach space, governed by a set of constraints K. Under appropriate assumptions of the data, this inequality has a unique solution ∈ . We associate inequality to a sequence of elliptic variational–hemivariational inequalities {} , governed by a set of constraints ̃⊃ , a sequence of parameters {}⊂ℝ+ , and a function . We prove that if, for each ∈ℕ , the element ∈̃ represents a solution to Problem , then the sequence {} converges to u as →0 . Based on this general result, we recover convergence results for various associated penalty methods previously obtained in the literature. These convergence results are obtained by considering particular choices of the set ̃ and the function . The corresponding penalty methods can be applied in the study of various inequality problems. To provide an example, we consider a purely hemivariational inequality that describes the equilibrium of an elastic membrane in contact with an obstacle, the so-called foundation. Fil: Sofonea, Mircea. Université de Perpignan Via Domitia; Italia Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina |
description |
We consider an elliptic variational–hemivariational inequality in a real reflexive Banach space, governed by a set of constraints K. Under appropriate assumptions of the data, this inequality has a unique solution ∈ . We associate inequality to a sequence of elliptic variational–hemivariational inequalities {} , governed by a set of constraints ̃⊃ , a sequence of parameters {}⊂ℝ+ , and a function . We prove that if, for each ∈ℕ , the element ∈̃ represents a solution to Problem , then the sequence {} converges to u as →0 . Based on this general result, we recover convergence results for various associated penalty methods previously obtained in the literature. These convergence results are obtained by considering particular choices of the set ̃ and the function . The corresponding penalty methods can be applied in the study of various inequality problems. To provide an example, we consider a purely hemivariational inequality that describes the equilibrium of an elastic membrane in contact with an obstacle, the so-called foundation. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/268980 Sofonea, Mircea; Tarzia, Domingo Alberto; A Penalty Method for Elliptic Variational–Hemivariational Inequalities; Multidisciplinary Digital Publishing Institute; Axioms; 13; 10; 10-2024; 1-17 2075-1680 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/268980 |
identifier_str_mv |
Sofonea, Mircea; Tarzia, Domingo Alberto; A Penalty Method for Elliptic Variational–Hemivariational Inequalities; Multidisciplinary Digital Publishing Institute; Axioms; 13; 10; 10-2024; 1-17 2075-1680 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-1680/13/10/721 info:eu-repo/semantics/altIdentifier/doi/10.3390/axioms13100721 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269213780082688 |
score |
13.13397 |