Multiple recurrence and hypercyclicity
- Autores
- Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study multiply recurrent and hypercyclic operators as a special case of F-hypercyclicity, where F is the family of subsets of the natural numbers containing arbitrarily long arithmetic progressions. We prove several properties of hypercyclic multiply recurrent operators, we characterize those operators which are weakly mixing and multiply recurrent, and we show that there are operators that are multiply recurrent and hypercyclic but not weakly mixing.
Fil: Cardeccia, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muro, Luis Santiago Miguel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina - Materia
-
hypercyclic operator
multiple recurrence
frequent hypercyclic - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/218506
Ver los metadatos del registro completo
id |
CONICETDig_2175f328d1900e6c3233be886b1c1c71 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/218506 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multiple recurrence and hypercyclicityCardeccia, Rodrigo AlejandroMuro, Luis Santiago Miguelhypercyclic operatormultiple recurrencefrequent hypercyclichttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study multiply recurrent and hypercyclic operators as a special case of F-hypercyclicity, where F is the family of subsets of the natural numbers containing arbitrarily long arithmetic progressions. We prove several properties of hypercyclic multiply recurrent operators, we characterize those operators which are weakly mixing and multiply recurrent, and we show that there are operators that are multiply recurrent and hypercyclic but not weakly mixing.Fil: Cardeccia, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Muro, Luis Santiago Miguel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaMatematisk Inst2022-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/218506Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Multiple recurrence and hypercyclicity; Matematisk Inst; Mathematica Scandinavica; 128; 3; 12-2022; 589-6100025-5521CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mscand.dk/article/view/133256info:eu-repo/semantics/altIdentifier/doi/10.7146/math.scand.a-133256info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2104.15033v2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:59Zoai:ri.conicet.gov.ar:11336/218506instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:59.656CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multiple recurrence and hypercyclicity |
title |
Multiple recurrence and hypercyclicity |
spellingShingle |
Multiple recurrence and hypercyclicity Cardeccia, Rodrigo Alejandro hypercyclic operator multiple recurrence frequent hypercyclic |
title_short |
Multiple recurrence and hypercyclicity |
title_full |
Multiple recurrence and hypercyclicity |
title_fullStr |
Multiple recurrence and hypercyclicity |
title_full_unstemmed |
Multiple recurrence and hypercyclicity |
title_sort |
Multiple recurrence and hypercyclicity |
dc.creator.none.fl_str_mv |
Cardeccia, Rodrigo Alejandro Muro, Luis Santiago Miguel |
author |
Cardeccia, Rodrigo Alejandro |
author_facet |
Cardeccia, Rodrigo Alejandro Muro, Luis Santiago Miguel |
author_role |
author |
author2 |
Muro, Luis Santiago Miguel |
author2_role |
author |
dc.subject.none.fl_str_mv |
hypercyclic operator multiple recurrence frequent hypercyclic |
topic |
hypercyclic operator multiple recurrence frequent hypercyclic |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study multiply recurrent and hypercyclic operators as a special case of F-hypercyclicity, where F is the family of subsets of the natural numbers containing arbitrarily long arithmetic progressions. We prove several properties of hypercyclic multiply recurrent operators, we characterize those operators which are weakly mixing and multiply recurrent, and we show that there are operators that are multiply recurrent and hypercyclic but not weakly mixing. Fil: Cardeccia, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Muro, Luis Santiago Miguel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
description |
We study multiply recurrent and hypercyclic operators as a special case of F-hypercyclicity, where F is the family of subsets of the natural numbers containing arbitrarily long arithmetic progressions. We prove several properties of hypercyclic multiply recurrent operators, we characterize those operators which are weakly mixing and multiply recurrent, and we show that there are operators that are multiply recurrent and hypercyclic but not weakly mixing. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/218506 Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Multiple recurrence and hypercyclicity; Matematisk Inst; Mathematica Scandinavica; 128; 3; 12-2022; 589-610 0025-5521 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/218506 |
identifier_str_mv |
Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Multiple recurrence and hypercyclicity; Matematisk Inst; Mathematica Scandinavica; 128; 3; 12-2022; 589-610 0025-5521 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mscand.dk/article/view/133256 info:eu-repo/semantics/altIdentifier/doi/10.7146/math.scand.a-133256 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2104.15033v2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Matematisk Inst |
publisher.none.fl_str_mv |
Matematisk Inst |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614426596999168 |
score |
13.070432 |