Multiple recurrence and hypercyclicity

Autores
Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study multiply recurrent and hypercyclic operators as a special case of F-hypercyclicity, where F is the family of subsets of the natural numbers containing arbitrarily long arithmetic progressions. We prove several properties of hypercyclic multiply recurrent operators, we characterize those operators which are weakly mixing and multiply recurrent, and we show that there are operators that are multiply recurrent and hypercyclic but not weakly mixing.
Fil: Cardeccia, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muro, Luis Santiago Miguel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Materia
hypercyclic operator
multiple recurrence
frequent hypercyclic
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/218506

id CONICETDig_2175f328d1900e6c3233be886b1c1c71
oai_identifier_str oai:ri.conicet.gov.ar:11336/218506
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multiple recurrence and hypercyclicityCardeccia, Rodrigo AlejandroMuro, Luis Santiago Miguelhypercyclic operatormultiple recurrencefrequent hypercyclichttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study multiply recurrent and hypercyclic operators as a special case of F-hypercyclicity, where F is the family of subsets of the natural numbers containing arbitrarily long arithmetic progressions. We prove several properties of hypercyclic multiply recurrent operators, we characterize those operators which are weakly mixing and multiply recurrent, and we show that there are operators that are multiply recurrent and hypercyclic but not weakly mixing.Fil: Cardeccia, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Muro, Luis Santiago Miguel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaMatematisk Inst2022-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/218506Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Multiple recurrence and hypercyclicity; Matematisk Inst; Mathematica Scandinavica; 128; 3; 12-2022; 589-6100025-5521CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mscand.dk/article/view/133256info:eu-repo/semantics/altIdentifier/doi/10.7146/math.scand.a-133256info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2104.15033v2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:59Zoai:ri.conicet.gov.ar:11336/218506instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:59.656CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multiple recurrence and hypercyclicity
title Multiple recurrence and hypercyclicity
spellingShingle Multiple recurrence and hypercyclicity
Cardeccia, Rodrigo Alejandro
hypercyclic operator
multiple recurrence
frequent hypercyclic
title_short Multiple recurrence and hypercyclicity
title_full Multiple recurrence and hypercyclicity
title_fullStr Multiple recurrence and hypercyclicity
title_full_unstemmed Multiple recurrence and hypercyclicity
title_sort Multiple recurrence and hypercyclicity
dc.creator.none.fl_str_mv Cardeccia, Rodrigo Alejandro
Muro, Luis Santiago Miguel
author Cardeccia, Rodrigo Alejandro
author_facet Cardeccia, Rodrigo Alejandro
Muro, Luis Santiago Miguel
author_role author
author2 Muro, Luis Santiago Miguel
author2_role author
dc.subject.none.fl_str_mv hypercyclic operator
multiple recurrence
frequent hypercyclic
topic hypercyclic operator
multiple recurrence
frequent hypercyclic
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study multiply recurrent and hypercyclic operators as a special case of F-hypercyclicity, where F is the family of subsets of the natural numbers containing arbitrarily long arithmetic progressions. We prove several properties of hypercyclic multiply recurrent operators, we characterize those operators which are weakly mixing and multiply recurrent, and we show that there are operators that are multiply recurrent and hypercyclic but not weakly mixing.
Fil: Cardeccia, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muro, Luis Santiago Miguel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
description We study multiply recurrent and hypercyclic operators as a special case of F-hypercyclicity, where F is the family of subsets of the natural numbers containing arbitrarily long arithmetic progressions. We prove several properties of hypercyclic multiply recurrent operators, we characterize those operators which are weakly mixing and multiply recurrent, and we show that there are operators that are multiply recurrent and hypercyclic but not weakly mixing.
publishDate 2022
dc.date.none.fl_str_mv 2022-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/218506
Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Multiple recurrence and hypercyclicity; Matematisk Inst; Mathematica Scandinavica; 128; 3; 12-2022; 589-610
0025-5521
CONICET Digital
CONICET
url http://hdl.handle.net/11336/218506
identifier_str_mv Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Multiple recurrence and hypercyclicity; Matematisk Inst; Mathematica Scandinavica; 128; 3; 12-2022; 589-610
0025-5521
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mscand.dk/article/view/133256
info:eu-repo/semantics/altIdentifier/doi/10.7146/math.scand.a-133256
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2104.15033v2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Matematisk Inst
publisher.none.fl_str_mv Matematisk Inst
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614426596999168
score 13.070432