On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions
- Autores
- Rossi, Julio Daniel; Saintier, Nicolas Bernard Claude
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the limit as p goes to infinity of the first non-zero eigenvalue λp of the p-Laplacian with Neumann boundary conditions in a smooth bounded domain U of Rn. We prove that λ∞:=lim λp1/p=2/diam(U), where diam(U) denotes the diameter of U with respect to the geodesic distance in U. We can think of λ∞ as the first eigenvalue of the infinity-Laplacian with Neumann boundary conditions. We also study the regularity of λ∞ as a function of the domain U proving that, under a smooth perturbation Ut of U by diffeomorphisms close to the identity, there holds that λ∞(Ut)=λ∞(U)+O(t). Although λ∞(Ut) is in general not differentiable at t=0, we provide sufficient geometric conditions for its differentiability with an explicit formula for the derivative.
Fil: Rossi, Julio Daniel. Universidad de Alicante; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Saintier, Nicolas Bernard Claude. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
infinity laplacian
eigenvalue
shape derivative
neumann boundary condition - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59878
Ver los metadatos del registro completo
| id |
CONICETDig_1db41e891264bc672103fb51c923d38b |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59878 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditionsRossi, Julio DanielSaintier, Nicolas Bernard Claudeinfinity laplacianeigenvalueshape derivativeneumann boundary conditionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the limit as p goes to infinity of the first non-zero eigenvalue λp of the p-Laplacian with Neumann boundary conditions in a smooth bounded domain U of Rn. We prove that λ∞:=lim λp1/p=2/diam(U), where diam(U) denotes the diameter of U with respect to the geodesic distance in U. We can think of λ∞ as the first eigenvalue of the infinity-Laplacian with Neumann boundary conditions. We also study the regularity of λ∞ as a function of the domain U proving that, under a smooth perturbation Ut of U by diffeomorphisms close to the identity, there holds that λ∞(Ut)=λ∞(U)+O(t). Although λ∞(Ut) is in general not differentiable at t=0, we provide sufficient geometric conditions for its differentiability with an explicit formula for the derivative.Fil: Rossi, Julio Daniel. Universidad de Alicante; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Saintier, Nicolas Bernard Claude. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaUniversity of Houston2016-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59878Rossi, Julio Daniel; Saintier, Nicolas Bernard Claude; On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions; University of Houston; Houston Journal Of Mathematics; 42; 2; 6-2016; 613-6350362-1588CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.math.uh.edu/~hjm/Vol42-2.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:52:41Zoai:ri.conicet.gov.ar:11336/59878instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:52:42.02CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions |
| title |
On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions |
| spellingShingle |
On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions Rossi, Julio Daniel infinity laplacian eigenvalue shape derivative neumann boundary condition |
| title_short |
On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions |
| title_full |
On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions |
| title_fullStr |
On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions |
| title_full_unstemmed |
On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions |
| title_sort |
On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions |
| dc.creator.none.fl_str_mv |
Rossi, Julio Daniel Saintier, Nicolas Bernard Claude |
| author |
Rossi, Julio Daniel |
| author_facet |
Rossi, Julio Daniel Saintier, Nicolas Bernard Claude |
| author_role |
author |
| author2 |
Saintier, Nicolas Bernard Claude |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
infinity laplacian eigenvalue shape derivative neumann boundary condition |
| topic |
infinity laplacian eigenvalue shape derivative neumann boundary condition |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We study the limit as p goes to infinity of the first non-zero eigenvalue λp of the p-Laplacian with Neumann boundary conditions in a smooth bounded domain U of Rn. We prove that λ∞:=lim λp1/p=2/diam(U), where diam(U) denotes the diameter of U with respect to the geodesic distance in U. We can think of λ∞ as the first eigenvalue of the infinity-Laplacian with Neumann boundary conditions. We also study the regularity of λ∞ as a function of the domain U proving that, under a smooth perturbation Ut of U by diffeomorphisms close to the identity, there holds that λ∞(Ut)=λ∞(U)+O(t). Although λ∞(Ut) is in general not differentiable at t=0, we provide sufficient geometric conditions for its differentiability with an explicit formula for the derivative. Fil: Rossi, Julio Daniel. Universidad de Alicante; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Saintier, Nicolas Bernard Claude. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
We study the limit as p goes to infinity of the first non-zero eigenvalue λp of the p-Laplacian with Neumann boundary conditions in a smooth bounded domain U of Rn. We prove that λ∞:=lim λp1/p=2/diam(U), where diam(U) denotes the diameter of U with respect to the geodesic distance in U. We can think of λ∞ as the first eigenvalue of the infinity-Laplacian with Neumann boundary conditions. We also study the regularity of λ∞ as a function of the domain U proving that, under a smooth perturbation Ut of U by diffeomorphisms close to the identity, there holds that λ∞(Ut)=λ∞(U)+O(t). Although λ∞(Ut) is in general not differentiable at t=0, we provide sufficient geometric conditions for its differentiability with an explicit formula for the derivative. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59878 Rossi, Julio Daniel; Saintier, Nicolas Bernard Claude; On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions; University of Houston; Houston Journal Of Mathematics; 42; 2; 6-2016; 613-635 0362-1588 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/59878 |
| identifier_str_mv |
Rossi, Julio Daniel; Saintier, Nicolas Bernard Claude; On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions; University of Houston; Houston Journal Of Mathematics; 42; 2; 6-2016; 613-635 0362-1588 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.math.uh.edu/~hjm/Vol42-2.html |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
University of Houston |
| publisher.none.fl_str_mv |
University of Houston |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598191192145920 |
| score |
12.976206 |