The first eigenvalue of the p- Laplacian on quantum graphs
- Autores
- del Pezzo, Leandro Martin; Rossi, Julio Daniel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the first eigenvalue of the p- Laplacian (with 1 < p< ∞) on a quantum graph with Dirichlet or Kirchoff boundary conditions on the nodes. We find lower and upper bounds for this eigenvalue when we prescribe the total sum of the lengths of the edges and the number of Dirichlet nodes of the graph. Also we find a formula for the shape derivative of the first eigenvalue (assuming that it is simple) when we perturb the graph by changing the length of an edge. Finally, we study in detail the limit cases p→ ∞ and p→ 1.
Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Eigenvalues
P- Laplacian
Quantum Graphs
Shape Derivative - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59802
Ver los metadatos del registro completo
id |
CONICETDig_db9a2a187259859b8e82a8f77b3c0052 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59802 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The first eigenvalue of the p- Laplacian on quantum graphsdel Pezzo, Leandro MartinRossi, Julio DanielEigenvaluesP- LaplacianQuantum GraphsShape Derivativehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the first eigenvalue of the p- Laplacian (with 1 < p< ∞) on a quantum graph with Dirichlet or Kirchoff boundary conditions on the nodes. We find lower and upper bounds for this eigenvalue when we prescribe the total sum of the lengths of the edges and the number of Dirichlet nodes of the graph. Also we find a formula for the shape derivative of the first eigenvalue (assuming that it is simple) when we perturb the graph by changing the length of an edge. Finally, we study in detail the limit cases p→ ∞ and p→ 1.Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59802del Pezzo, Leandro Martin; Rossi, Julio Daniel; The first eigenvalue of the p- Laplacian on quantum graphs; Springer; Analysis and Mathematical Physics; 6; 4; 12-2016; 365-3911664-23681664-235XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s13324-016-0123-yinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs13324-016-0123-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:31Zoai:ri.conicet.gov.ar:11336/59802instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:31.45CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The first eigenvalue of the p- Laplacian on quantum graphs |
title |
The first eigenvalue of the p- Laplacian on quantum graphs |
spellingShingle |
The first eigenvalue of the p- Laplacian on quantum graphs del Pezzo, Leandro Martin Eigenvalues P- Laplacian Quantum Graphs Shape Derivative |
title_short |
The first eigenvalue of the p- Laplacian on quantum graphs |
title_full |
The first eigenvalue of the p- Laplacian on quantum graphs |
title_fullStr |
The first eigenvalue of the p- Laplacian on quantum graphs |
title_full_unstemmed |
The first eigenvalue of the p- Laplacian on quantum graphs |
title_sort |
The first eigenvalue of the p- Laplacian on quantum graphs |
dc.creator.none.fl_str_mv |
del Pezzo, Leandro Martin Rossi, Julio Daniel |
author |
del Pezzo, Leandro Martin |
author_facet |
del Pezzo, Leandro Martin Rossi, Julio Daniel |
author_role |
author |
author2 |
Rossi, Julio Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Eigenvalues P- Laplacian Quantum Graphs Shape Derivative |
topic |
Eigenvalues P- Laplacian Quantum Graphs Shape Derivative |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the first eigenvalue of the p- Laplacian (with 1 < p< ∞) on a quantum graph with Dirichlet or Kirchoff boundary conditions on the nodes. We find lower and upper bounds for this eigenvalue when we prescribe the total sum of the lengths of the edges and the number of Dirichlet nodes of the graph. Also we find a formula for the shape derivative of the first eigenvalue (assuming that it is simple) when we perturb the graph by changing the length of an edge. Finally, we study in detail the limit cases p→ ∞ and p→ 1. Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We study the first eigenvalue of the p- Laplacian (with 1 < p< ∞) on a quantum graph with Dirichlet or Kirchoff boundary conditions on the nodes. We find lower and upper bounds for this eigenvalue when we prescribe the total sum of the lengths of the edges and the number of Dirichlet nodes of the graph. Also we find a formula for the shape derivative of the first eigenvalue (assuming that it is simple) when we perturb the graph by changing the length of an edge. Finally, we study in detail the limit cases p→ ∞ and p→ 1. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59802 del Pezzo, Leandro Martin; Rossi, Julio Daniel; The first eigenvalue of the p- Laplacian on quantum graphs; Springer; Analysis and Mathematical Physics; 6; 4; 12-2016; 365-391 1664-2368 1664-235X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59802 |
identifier_str_mv |
del Pezzo, Leandro Martin; Rossi, Julio Daniel; The first eigenvalue of the p- Laplacian on quantum graphs; Springer; Analysis and Mathematical Physics; 6; 4; 12-2016; 365-391 1664-2368 1664-235X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s13324-016-0123-y info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs13324-016-0123-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614147814195200 |
score |
13.070432 |