Eigenvalues homogenization for the fractional p-laplacian
- Autores
- Salort, Ariel Martin
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered.
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
eigenvalue
homogenization
fractional laplacian
nonlocal - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18913
Ver los metadatos del registro completo
id |
CONICETDig_b08db5a7a119ad540aa746006706ed14 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18913 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Eigenvalues homogenization for the fractional p-laplacianSalort, Ariel Martineigenvaluehomogenizationfractional laplaciannonlocalhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered.Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaTexas State University. Department of Mathematics2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18913Salort, Ariel Martin; Eigenvalues homogenization for the fractional p-laplacian; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2016; 312; 12-2016; 1-131072-6691CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2016/312/abstr.htmlinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1310.7992info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:26Zoai:ri.conicet.gov.ar:11336/18913instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:26.259CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Eigenvalues homogenization for the fractional p-laplacian |
title |
Eigenvalues homogenization for the fractional p-laplacian |
spellingShingle |
Eigenvalues homogenization for the fractional p-laplacian Salort, Ariel Martin eigenvalue homogenization fractional laplacian nonlocal |
title_short |
Eigenvalues homogenization for the fractional p-laplacian |
title_full |
Eigenvalues homogenization for the fractional p-laplacian |
title_fullStr |
Eigenvalues homogenization for the fractional p-laplacian |
title_full_unstemmed |
Eigenvalues homogenization for the fractional p-laplacian |
title_sort |
Eigenvalues homogenization for the fractional p-laplacian |
dc.creator.none.fl_str_mv |
Salort, Ariel Martin |
author |
Salort, Ariel Martin |
author_facet |
Salort, Ariel Martin |
author_role |
author |
dc.subject.none.fl_str_mv |
eigenvalue homogenization fractional laplacian nonlocal |
topic |
eigenvalue homogenization fractional laplacian nonlocal |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered. Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18913 Salort, Ariel Martin; Eigenvalues homogenization for the fractional p-laplacian; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2016; 312; 12-2016; 1-13 1072-6691 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18913 |
identifier_str_mv |
Salort, Ariel Martin; Eigenvalues homogenization for the fractional p-laplacian; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2016; 312; 12-2016; 1-13 1072-6691 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2016/312/abstr.html info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1310.7992 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Texas State University. Department of Mathematics |
publisher.none.fl_str_mv |
Texas State University. Department of Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269958360268800 |
score |
13.13397 |