Eigenvalues homogenization for the fractional p-laplacian

Autores
Salort, Ariel Martin
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered.
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
eigenvalue
homogenization
fractional laplacian
nonlocal
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18913

id CONICETDig_b08db5a7a119ad540aa746006706ed14
oai_identifier_str oai:ri.conicet.gov.ar:11336/18913
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Eigenvalues homogenization for the fractional p-laplacianSalort, Ariel Martineigenvaluehomogenizationfractional laplaciannonlocalhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered.Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaTexas State University. Department of Mathematics2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18913Salort, Ariel Martin; Eigenvalues homogenization for the fractional p-laplacian; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2016; 312; 12-2016; 1-131072-6691CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2016/312/abstr.htmlinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1310.7992info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:26Zoai:ri.conicet.gov.ar:11336/18913instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:26.259CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Eigenvalues homogenization for the fractional p-laplacian
title Eigenvalues homogenization for the fractional p-laplacian
spellingShingle Eigenvalues homogenization for the fractional p-laplacian
Salort, Ariel Martin
eigenvalue
homogenization
fractional laplacian
nonlocal
title_short Eigenvalues homogenization for the fractional p-laplacian
title_full Eigenvalues homogenization for the fractional p-laplacian
title_fullStr Eigenvalues homogenization for the fractional p-laplacian
title_full_unstemmed Eigenvalues homogenization for the fractional p-laplacian
title_sort Eigenvalues homogenization for the fractional p-laplacian
dc.creator.none.fl_str_mv Salort, Ariel Martin
author Salort, Ariel Martin
author_facet Salort, Ariel Martin
author_role author
dc.subject.none.fl_str_mv eigenvalue
homogenization
fractional laplacian
nonlocal
topic eigenvalue
homogenization
fractional laplacian
nonlocal
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered.
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered.
publishDate 2016
dc.date.none.fl_str_mv 2016-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18913
Salort, Ariel Martin; Eigenvalues homogenization for the fractional p-laplacian; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2016; 312; 12-2016; 1-13
1072-6691
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18913
identifier_str_mv Salort, Ariel Martin; Eigenvalues homogenization for the fractional p-laplacian; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2016; 312; 12-2016; 1-13
1072-6691
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2016/312/abstr.html
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1310.7992
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Texas State University. Department of Mathematics
publisher.none.fl_str_mv Texas State University. Department of Mathematics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269958360268800
score 13.13397