Permanence properties of the second nilpotent product of groups

Autores
Sasyk, Roman
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that amenability, the Haagerup property, the Kazhdan´s property (T) and exactness are preserved under taking second nilpotent product of groups. We also define the restricted second nilpotent wreath product of groups, this is a semi-direct product akin to the restricted wreath product but constructed from the second nilpotent product. We then show that if two discrete groups have the Haagerup property, the restricted second nilpotent wreath product of them also has the Haagerup property. We finally show that if a discrete group is abelian, then the restricted second nilpotent wreath product constructed from it is unitarizable if and only if the acting group is amenable.
Fil: Sasyk, Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
SECOND NILPOTENT PRODUCT OF GROUPS
WREATH PRODUCT OF GROUPS
GROUPS WITH THE HAAGERUP PROPERTY
GROUPS WITH THE KAZDHAN'S PROPERTY (T)
EXACT GROUPS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/112043

id CONICETDig_19dc2b5a74eecdce5b3d6695f173782a
oai_identifier_str oai:ri.conicet.gov.ar:11336/112043
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Permanence properties of the second nilpotent product of groupsSasyk, RomanSECOND NILPOTENT PRODUCT OF GROUPSWREATH PRODUCT OF GROUPSGROUPS WITH THE HAAGERUP PROPERTYGROUPS WITH THE KAZDHAN'S PROPERTY (T)EXACT GROUPShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that amenability, the Haagerup property, the Kazhdan´s property (T) and exactness are preserved under taking second nilpotent product of groups. We also define the restricted second nilpotent wreath product of groups, this is a semi-direct product akin to the restricted wreath product but constructed from the second nilpotent product. We then show that if two discrete groups have the Haagerup property, the restricted second nilpotent wreath product of them also has the Haagerup property. We finally show that if a discrete group is abelian, then the restricted second nilpotent wreath product constructed from it is unitarizable if and only if the acting group is amenable.Fil: Sasyk, Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaBelgian Mathematical Soc Triomphe2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112043Sasyk, Roman; Permanence properties of the second nilpotent product of groups; Belgian Mathematical Soc Triomphe; Bulletin Of The Belgian Mathematical Society-simon Stevin; 26; 7-2019; 725-7421370-1444CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.bbms/1579402819info:eu-repo/semantics/altIdentifier/doi/10.36045/bbms/1579402819info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:32Zoai:ri.conicet.gov.ar:11336/112043instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:32.991CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Permanence properties of the second nilpotent product of groups
title Permanence properties of the second nilpotent product of groups
spellingShingle Permanence properties of the second nilpotent product of groups
Sasyk, Roman
SECOND NILPOTENT PRODUCT OF GROUPS
WREATH PRODUCT OF GROUPS
GROUPS WITH THE HAAGERUP PROPERTY
GROUPS WITH THE KAZDHAN'S PROPERTY (T)
EXACT GROUPS
title_short Permanence properties of the second nilpotent product of groups
title_full Permanence properties of the second nilpotent product of groups
title_fullStr Permanence properties of the second nilpotent product of groups
title_full_unstemmed Permanence properties of the second nilpotent product of groups
title_sort Permanence properties of the second nilpotent product of groups
dc.creator.none.fl_str_mv Sasyk, Roman
author Sasyk, Roman
author_facet Sasyk, Roman
author_role author
dc.subject.none.fl_str_mv SECOND NILPOTENT PRODUCT OF GROUPS
WREATH PRODUCT OF GROUPS
GROUPS WITH THE HAAGERUP PROPERTY
GROUPS WITH THE KAZDHAN'S PROPERTY (T)
EXACT GROUPS
topic SECOND NILPOTENT PRODUCT OF GROUPS
WREATH PRODUCT OF GROUPS
GROUPS WITH THE HAAGERUP PROPERTY
GROUPS WITH THE KAZDHAN'S PROPERTY (T)
EXACT GROUPS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We show that amenability, the Haagerup property, the Kazhdan´s property (T) and exactness are preserved under taking second nilpotent product of groups. We also define the restricted second nilpotent wreath product of groups, this is a semi-direct product akin to the restricted wreath product but constructed from the second nilpotent product. We then show that if two discrete groups have the Haagerup property, the restricted second nilpotent wreath product of them also has the Haagerup property. We finally show that if a discrete group is abelian, then the restricted second nilpotent wreath product constructed from it is unitarizable if and only if the acting group is amenable.
Fil: Sasyk, Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description We show that amenability, the Haagerup property, the Kazhdan´s property (T) and exactness are preserved under taking second nilpotent product of groups. We also define the restricted second nilpotent wreath product of groups, this is a semi-direct product akin to the restricted wreath product but constructed from the second nilpotent product. We then show that if two discrete groups have the Haagerup property, the restricted second nilpotent wreath product of them also has the Haagerup property. We finally show that if a discrete group is abelian, then the restricted second nilpotent wreath product constructed from it is unitarizable if and only if the acting group is amenable.
publishDate 2019
dc.date.none.fl_str_mv 2019-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/112043
Sasyk, Roman; Permanence properties of the second nilpotent product of groups; Belgian Mathematical Soc Triomphe; Bulletin Of The Belgian Mathematical Society-simon Stevin; 26; 7-2019; 725-742
1370-1444
CONICET Digital
CONICET
url http://hdl.handle.net/11336/112043
identifier_str_mv Sasyk, Roman; Permanence properties of the second nilpotent product of groups; Belgian Mathematical Soc Triomphe; Bulletin Of The Belgian Mathematical Society-simon Stevin; 26; 7-2019; 725-742
1370-1444
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.bbms/1579402819
info:eu-repo/semantics/altIdentifier/doi/10.36045/bbms/1579402819
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Belgian Mathematical Soc Triomphe
publisher.none.fl_str_mv Belgian Mathematical Soc Triomphe
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269166011154432
score 13.13397