Permanence properties of the second nilpotent product of groups
- Autores
- Sasyk, Roman
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that amenability, the Haagerup property, the Kazhdan´s property (T) and exactness are preserved under taking second nilpotent product of groups. We also define the restricted second nilpotent wreath product of groups, this is a semi-direct product akin to the restricted wreath product but constructed from the second nilpotent product. We then show that if two discrete groups have the Haagerup property, the restricted second nilpotent wreath product of them also has the Haagerup property. We finally show that if a discrete group is abelian, then the restricted second nilpotent wreath product constructed from it is unitarizable if and only if the acting group is amenable.
Fil: Sasyk, Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
SECOND NILPOTENT PRODUCT OF GROUPS
WREATH PRODUCT OF GROUPS
GROUPS WITH THE HAAGERUP PROPERTY
GROUPS WITH THE KAZDHAN'S PROPERTY (T)
EXACT GROUPS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/112043
Ver los metadatos del registro completo
id |
CONICETDig_19dc2b5a74eecdce5b3d6695f173782a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/112043 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Permanence properties of the second nilpotent product of groupsSasyk, RomanSECOND NILPOTENT PRODUCT OF GROUPSWREATH PRODUCT OF GROUPSGROUPS WITH THE HAAGERUP PROPERTYGROUPS WITH THE KAZDHAN'S PROPERTY (T)EXACT GROUPShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that amenability, the Haagerup property, the Kazhdan´s property (T) and exactness are preserved under taking second nilpotent product of groups. We also define the restricted second nilpotent wreath product of groups, this is a semi-direct product akin to the restricted wreath product but constructed from the second nilpotent product. We then show that if two discrete groups have the Haagerup property, the restricted second nilpotent wreath product of them also has the Haagerup property. We finally show that if a discrete group is abelian, then the restricted second nilpotent wreath product constructed from it is unitarizable if and only if the acting group is amenable.Fil: Sasyk, Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaBelgian Mathematical Soc Triomphe2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112043Sasyk, Roman; Permanence properties of the second nilpotent product of groups; Belgian Mathematical Soc Triomphe; Bulletin Of The Belgian Mathematical Society-simon Stevin; 26; 7-2019; 725-7421370-1444CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.bbms/1579402819info:eu-repo/semantics/altIdentifier/doi/10.36045/bbms/1579402819info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:32Zoai:ri.conicet.gov.ar:11336/112043instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:32.991CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Permanence properties of the second nilpotent product of groups |
title |
Permanence properties of the second nilpotent product of groups |
spellingShingle |
Permanence properties of the second nilpotent product of groups Sasyk, Roman SECOND NILPOTENT PRODUCT OF GROUPS WREATH PRODUCT OF GROUPS GROUPS WITH THE HAAGERUP PROPERTY GROUPS WITH THE KAZDHAN'S PROPERTY (T) EXACT GROUPS |
title_short |
Permanence properties of the second nilpotent product of groups |
title_full |
Permanence properties of the second nilpotent product of groups |
title_fullStr |
Permanence properties of the second nilpotent product of groups |
title_full_unstemmed |
Permanence properties of the second nilpotent product of groups |
title_sort |
Permanence properties of the second nilpotent product of groups |
dc.creator.none.fl_str_mv |
Sasyk, Roman |
author |
Sasyk, Roman |
author_facet |
Sasyk, Roman |
author_role |
author |
dc.subject.none.fl_str_mv |
SECOND NILPOTENT PRODUCT OF GROUPS WREATH PRODUCT OF GROUPS GROUPS WITH THE HAAGERUP PROPERTY GROUPS WITH THE KAZDHAN'S PROPERTY (T) EXACT GROUPS |
topic |
SECOND NILPOTENT PRODUCT OF GROUPS WREATH PRODUCT OF GROUPS GROUPS WITH THE HAAGERUP PROPERTY GROUPS WITH THE KAZDHAN'S PROPERTY (T) EXACT GROUPS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show that amenability, the Haagerup property, the Kazhdan´s property (T) and exactness are preserved under taking second nilpotent product of groups. We also define the restricted second nilpotent wreath product of groups, this is a semi-direct product akin to the restricted wreath product but constructed from the second nilpotent product. We then show that if two discrete groups have the Haagerup property, the restricted second nilpotent wreath product of them also has the Haagerup property. We finally show that if a discrete group is abelian, then the restricted second nilpotent wreath product constructed from it is unitarizable if and only if the acting group is amenable. Fil: Sasyk, Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
We show that amenability, the Haagerup property, the Kazhdan´s property (T) and exactness are preserved under taking second nilpotent product of groups. We also define the restricted second nilpotent wreath product of groups, this is a semi-direct product akin to the restricted wreath product but constructed from the second nilpotent product. We then show that if two discrete groups have the Haagerup property, the restricted second nilpotent wreath product of them also has the Haagerup property. We finally show that if a discrete group is abelian, then the restricted second nilpotent wreath product constructed from it is unitarizable if and only if the acting group is amenable. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/112043 Sasyk, Roman; Permanence properties of the second nilpotent product of groups; Belgian Mathematical Soc Triomphe; Bulletin Of The Belgian Mathematical Society-simon Stevin; 26; 7-2019; 725-742 1370-1444 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/112043 |
identifier_str_mv |
Sasyk, Roman; Permanence properties of the second nilpotent product of groups; Belgian Mathematical Soc Triomphe; Bulletin Of The Belgian Mathematical Society-simon Stevin; 26; 7-2019; 725-742 1370-1444 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.bbms/1579402819 info:eu-repo/semantics/altIdentifier/doi/10.36045/bbms/1579402819 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Belgian Mathematical Soc Triomphe |
publisher.none.fl_str_mv |
Belgian Mathematical Soc Triomphe |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269166011154432 |
score |
13.13397 |