Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type V : Mixed classes in Chevalley and Steinberg groups

Autores
Andruskiewitsch, Nicolás; Carnovale, Giovanna; García, Gastón Andrés
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that all classes that are neither semisimple nor unipotent in finite simple Chevalley or Steinberg groups different from PSLₙ(q) collapse (i.e. are never the support of a finite-dimensional Nichols algebra). As a consequence, we prove that the only finite-dimensional pointed Hopf algebra whose group of group-like elements is PSp₂ₙ(q), PΩ⁺₄ₙ, PΩ⁻₄ₙ, ³D₄(q), E₇(q), E₈(q), F₄(q), or G₂(q) with q even is the group algebra.
Facultad de Ciencias Exactas
Materia
Matemática
Hopf algebras and their applications
Simple groups: alternating groups and groups of Lie type
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/132335

id SEDICI_fb27f79630481dfdd094abbb894cba4e
oai_identifier_str oai:sedici.unlp.edu.ar:10915/132335
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type V : Mixed classes in Chevalley and Steinberg groupsAndruskiewitsch, NicolásCarnovale, GiovannaGarcía, Gastón AndrésMatemáticaHopf algebras and their applicationsSimple groups: alternating groups and groups of Lie typeWe show that all classes that are neither semisimple nor unipotent in finite simple Chevalley or Steinberg groups different from PSLₙ(q) collapse (i.e. are never the support of a finite-dimensional Nichols algebra). As a consequence, we prove that the only finite-dimensional pointed Hopf algebra whose group of group-like elements is PSp₂ₙ(q), PΩ⁺₄ₙ, PΩ⁻₄ₙ, ³D₄(q), E₇(q), E₈(q), F₄(q), or G₂(q) with q even is the group algebra.Facultad de Ciencias Exactas2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf605-647http://sedici.unlp.edu.ar/handle/10915/132335enginfo:eu-repo/semantics/altIdentifier/issn/0025-2611info:eu-repo/semantics/altIdentifier/issn/1432-1785info:eu-repo/semantics/altIdentifier/doi/10.1007/s00229-020-01248-5info:eu-repo/semantics/reference/hdl/10915/102972info:eu-repo/semantics/reference/hdl/10915/129363info:eu-repo/semantics/reference/hdl/10915/132328info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:13:20Zoai:sedici.unlp.edu.ar:10915/132335Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:13:21.17SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type V : Mixed classes in Chevalley and Steinberg groups
title Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type V : Mixed classes in Chevalley and Steinberg groups
spellingShingle Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type V : Mixed classes in Chevalley and Steinberg groups
Andruskiewitsch, Nicolás
Matemática
Hopf algebras and their applications
Simple groups: alternating groups and groups of Lie type
title_short Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type V : Mixed classes in Chevalley and Steinberg groups
title_full Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type V : Mixed classes in Chevalley and Steinberg groups
title_fullStr Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type V : Mixed classes in Chevalley and Steinberg groups
title_full_unstemmed Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type V : Mixed classes in Chevalley and Steinberg groups
title_sort Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type V : Mixed classes in Chevalley and Steinberg groups
dc.creator.none.fl_str_mv Andruskiewitsch, Nicolás
Carnovale, Giovanna
García, Gastón Andrés
author Andruskiewitsch, Nicolás
author_facet Andruskiewitsch, Nicolás
Carnovale, Giovanna
García, Gastón Andrés
author_role author
author2 Carnovale, Giovanna
García, Gastón Andrés
author2_role author
author
dc.subject.none.fl_str_mv Matemática
Hopf algebras and their applications
Simple groups: alternating groups and groups of Lie type
topic Matemática
Hopf algebras and their applications
Simple groups: alternating groups and groups of Lie type
dc.description.none.fl_txt_mv We show that all classes that are neither semisimple nor unipotent in finite simple Chevalley or Steinberg groups different from PSLₙ(q) collapse (i.e. are never the support of a finite-dimensional Nichols algebra). As a consequence, we prove that the only finite-dimensional pointed Hopf algebra whose group of group-like elements is PSp₂ₙ(q), PΩ⁺₄ₙ, PΩ⁻₄ₙ, ³D₄(q), E₇(q), E₈(q), F₄(q), or G₂(q) with q even is the group algebra.
Facultad de Ciencias Exactas
description We show that all classes that are neither semisimple nor unipotent in finite simple Chevalley or Steinberg groups different from PSLₙ(q) collapse (i.e. are never the support of a finite-dimensional Nichols algebra). As a consequence, we prove that the only finite-dimensional pointed Hopf algebra whose group of group-like elements is PSp₂ₙ(q), PΩ⁺₄ₙ, PΩ⁻₄ₙ, ³D₄(q), E₇(q), E₈(q), F₄(q), or G₂(q) with q even is the group algebra.
publishDate 2021
dc.date.none.fl_str_mv 2021-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/132335
url http://sedici.unlp.edu.ar/handle/10915/132335
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0025-2611
info:eu-repo/semantics/altIdentifier/issn/1432-1785
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00229-020-01248-5
info:eu-repo/semantics/reference/hdl/10915/102972
info:eu-repo/semantics/reference/hdl/10915/129363
info:eu-repo/semantics/reference/hdl/10915/132328
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
605-647
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783502417133568
score 12.982451