Permanence properties of verbal products and verbal wreath products of groups
- Autores
- Brude, Javier Eugenio; Sasyk, Roman
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- By means of analyzing the notion of verbal products of groups, we show that soficity, hyperlinearity, amenability, the Haagerup property, the Kazhdan property (T), and exactness are preserved under taking k-nilpotent products of groups, while being orderable is not preserved. We also study these properties for solvable and for Burnside products of groups. We then show that if two discrete groups are sofic, or have the Haagerup property, their restricted verbal wreath product arising from nilpotent, solvable, and certain Burnside products is also sofic or has the Haagerup property, respectively. We also prove related results for hyperlinear, linear sofic, and weakly sofic approximations. Finally, we give applications combining our work with the Shmelkin embedding to show that certain quotients of free groups are sofic or have the Haagerup property.
Fil: Brude, Javier Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Sasyk, Roman. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
VERBAL PRODUCTS OF GROUPS
VERBAL WREATH PRODUCTS
SOFIC GROUPS
HYPERLINEAR GROUPS
LINEAR SOFIC GROUPS
WEAKLY SOFIC GROUPS
HAAGERUP PROPERTY
KAZHDAN’S PROPERTY (T)
EXACT GROUPS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/202222
Ver los metadatos del registro completo
id |
CONICETDig_fe4a15bf5c3eaa9d35d0dd1b06ba0dae |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/202222 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Permanence properties of verbal products and verbal wreath products of groupsBrude, Javier EugenioSasyk, RomanVERBAL PRODUCTS OF GROUPSVERBAL WREATH PRODUCTSSOFIC GROUPSHYPERLINEAR GROUPSLINEAR SOFIC GROUPSWEAKLY SOFIC GROUPSHAAGERUP PROPERTYKAZHDAN’S PROPERTY (T)EXACT GROUPShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1By means of analyzing the notion of verbal products of groups, we show that soficity, hyperlinearity, amenability, the Haagerup property, the Kazhdan property (T), and exactness are preserved under taking k-nilpotent products of groups, while being orderable is not preserved. We also study these properties for solvable and for Burnside products of groups. We then show that if two discrete groups are sofic, or have the Haagerup property, their restricted verbal wreath product arising from nilpotent, solvable, and certain Burnside products is also sofic or has the Haagerup property, respectively. We also prove related results for hyperlinear, linear sofic, and weakly sofic approximations. Finally, we give applications combining our work with the Shmelkin embedding to show that certain quotients of free groups are sofic or have the Haagerup property.Fil: Brude, Javier Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Sasyk, Roman. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaEuropean Mathematical Society2022-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/202222Brude, Javier Eugenio; Sasyk, Roman; Permanence properties of verbal products and verbal wreath products of groups; European Mathematical Society; Groups Geometry And Dynamics; 16; 2; 7-2022; 363-4011661-7207CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/ggd/articles/6446556info:eu-repo/semantics/altIdentifier/doi/10.4171/GGD/665info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1909.07800info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:12Zoai:ri.conicet.gov.ar:11336/202222instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:12.459CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Permanence properties of verbal products and verbal wreath products of groups |
title |
Permanence properties of verbal products and verbal wreath products of groups |
spellingShingle |
Permanence properties of verbal products and verbal wreath products of groups Brude, Javier Eugenio VERBAL PRODUCTS OF GROUPS VERBAL WREATH PRODUCTS SOFIC GROUPS HYPERLINEAR GROUPS LINEAR SOFIC GROUPS WEAKLY SOFIC GROUPS HAAGERUP PROPERTY KAZHDAN’S PROPERTY (T) EXACT GROUPS |
title_short |
Permanence properties of verbal products and verbal wreath products of groups |
title_full |
Permanence properties of verbal products and verbal wreath products of groups |
title_fullStr |
Permanence properties of verbal products and verbal wreath products of groups |
title_full_unstemmed |
Permanence properties of verbal products and verbal wreath products of groups |
title_sort |
Permanence properties of verbal products and verbal wreath products of groups |
dc.creator.none.fl_str_mv |
Brude, Javier Eugenio Sasyk, Roman |
author |
Brude, Javier Eugenio |
author_facet |
Brude, Javier Eugenio Sasyk, Roman |
author_role |
author |
author2 |
Sasyk, Roman |
author2_role |
author |
dc.subject.none.fl_str_mv |
VERBAL PRODUCTS OF GROUPS VERBAL WREATH PRODUCTS SOFIC GROUPS HYPERLINEAR GROUPS LINEAR SOFIC GROUPS WEAKLY SOFIC GROUPS HAAGERUP PROPERTY KAZHDAN’S PROPERTY (T) EXACT GROUPS |
topic |
VERBAL PRODUCTS OF GROUPS VERBAL WREATH PRODUCTS SOFIC GROUPS HYPERLINEAR GROUPS LINEAR SOFIC GROUPS WEAKLY SOFIC GROUPS HAAGERUP PROPERTY KAZHDAN’S PROPERTY (T) EXACT GROUPS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
By means of analyzing the notion of verbal products of groups, we show that soficity, hyperlinearity, amenability, the Haagerup property, the Kazhdan property (T), and exactness are preserved under taking k-nilpotent products of groups, while being orderable is not preserved. We also study these properties for solvable and for Burnside products of groups. We then show that if two discrete groups are sofic, or have the Haagerup property, their restricted verbal wreath product arising from nilpotent, solvable, and certain Burnside products is also sofic or has the Haagerup property, respectively. We also prove related results for hyperlinear, linear sofic, and weakly sofic approximations. Finally, we give applications combining our work with the Shmelkin embedding to show that certain quotients of free groups are sofic or have the Haagerup property. Fil: Brude, Javier Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Sasyk, Roman. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
By means of analyzing the notion of verbal products of groups, we show that soficity, hyperlinearity, amenability, the Haagerup property, the Kazhdan property (T), and exactness are preserved under taking k-nilpotent products of groups, while being orderable is not preserved. We also study these properties for solvable and for Burnside products of groups. We then show that if two discrete groups are sofic, or have the Haagerup property, their restricted verbal wreath product arising from nilpotent, solvable, and certain Burnside products is also sofic or has the Haagerup property, respectively. We also prove related results for hyperlinear, linear sofic, and weakly sofic approximations. Finally, we give applications combining our work with the Shmelkin embedding to show that certain quotients of free groups are sofic or have the Haagerup property. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/202222 Brude, Javier Eugenio; Sasyk, Roman; Permanence properties of verbal products and verbal wreath products of groups; European Mathematical Society; Groups Geometry And Dynamics; 16; 2; 7-2022; 363-401 1661-7207 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/202222 |
identifier_str_mv |
Brude, Javier Eugenio; Sasyk, Roman; Permanence properties of verbal products and verbal wreath products of groups; European Mathematical Society; Groups Geometry And Dynamics; 16; 2; 7-2022; 363-401 1661-7207 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/ggd/articles/6446556 info:eu-repo/semantics/altIdentifier/doi/10.4171/GGD/665 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1909.07800 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
European Mathematical Society |
publisher.none.fl_str_mv |
European Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269390860451841 |
score |
13.13397 |