Permanence properties of verbal products and verbal wreath products of groups

Autores
Brude, Javier Eugenio; Sasyk, Roman
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
By means of analyzing the notion of verbal products of groups, we show that soficity, hyperlinearity, amenability, the Haagerup property, the Kazhdan property (T), and exactness are preserved under taking k-nilpotent products of groups, while being orderable is not preserved. We also study these properties for solvable and for Burnside products of groups. We then show that if two discrete groups are sofic, or have the Haagerup property, their restricted verbal wreath product arising from nilpotent, solvable, and certain Burnside products is also sofic or has the Haagerup property, respectively. We also prove related results for hyperlinear, linear sofic, and weakly sofic approximations. Finally, we give applications combining our work with the Shmelkin embedding to show that certain quotients of free groups are sofic or have the Haagerup property.
Fil: Brude, Javier Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Sasyk, Roman. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
VERBAL PRODUCTS OF GROUPS
VERBAL WREATH PRODUCTS
SOFIC GROUPS
HYPERLINEAR GROUPS
LINEAR SOFIC GROUPS
WEAKLY SOFIC GROUPS
HAAGERUP PROPERTY
KAZHDAN’S PROPERTY (T)
EXACT GROUPS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/202222

id CONICETDig_fe4a15bf5c3eaa9d35d0dd1b06ba0dae
oai_identifier_str oai:ri.conicet.gov.ar:11336/202222
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Permanence properties of verbal products and verbal wreath products of groupsBrude, Javier EugenioSasyk, RomanVERBAL PRODUCTS OF GROUPSVERBAL WREATH PRODUCTSSOFIC GROUPSHYPERLINEAR GROUPSLINEAR SOFIC GROUPSWEAKLY SOFIC GROUPSHAAGERUP PROPERTYKAZHDAN’S PROPERTY (T)EXACT GROUPShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1By means of analyzing the notion of verbal products of groups, we show that soficity, hyperlinearity, amenability, the Haagerup property, the Kazhdan property (T), and exactness are preserved under taking k-nilpotent products of groups, while being orderable is not preserved. We also study these properties for solvable and for Burnside products of groups. We then show that if two discrete groups are sofic, or have the Haagerup property, their restricted verbal wreath product arising from nilpotent, solvable, and certain Burnside products is also sofic or has the Haagerup property, respectively. We also prove related results for hyperlinear, linear sofic, and weakly sofic approximations. Finally, we give applications combining our work with the Shmelkin embedding to show that certain quotients of free groups are sofic or have the Haagerup property.Fil: Brude, Javier Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Sasyk, Roman. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaEuropean Mathematical Society2022-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/202222Brude, Javier Eugenio; Sasyk, Roman; Permanence properties of verbal products and verbal wreath products of groups; European Mathematical Society; Groups Geometry And Dynamics; 16; 2; 7-2022; 363-4011661-7207CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/ggd/articles/6446556info:eu-repo/semantics/altIdentifier/doi/10.4171/GGD/665info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1909.07800info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:12Zoai:ri.conicet.gov.ar:11336/202222instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:12.459CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Permanence properties of verbal products and verbal wreath products of groups
title Permanence properties of verbal products and verbal wreath products of groups
spellingShingle Permanence properties of verbal products and verbal wreath products of groups
Brude, Javier Eugenio
VERBAL PRODUCTS OF GROUPS
VERBAL WREATH PRODUCTS
SOFIC GROUPS
HYPERLINEAR GROUPS
LINEAR SOFIC GROUPS
WEAKLY SOFIC GROUPS
HAAGERUP PROPERTY
KAZHDAN’S PROPERTY (T)
EXACT GROUPS
title_short Permanence properties of verbal products and verbal wreath products of groups
title_full Permanence properties of verbal products and verbal wreath products of groups
title_fullStr Permanence properties of verbal products and verbal wreath products of groups
title_full_unstemmed Permanence properties of verbal products and verbal wreath products of groups
title_sort Permanence properties of verbal products and verbal wreath products of groups
dc.creator.none.fl_str_mv Brude, Javier Eugenio
Sasyk, Roman
author Brude, Javier Eugenio
author_facet Brude, Javier Eugenio
Sasyk, Roman
author_role author
author2 Sasyk, Roman
author2_role author
dc.subject.none.fl_str_mv VERBAL PRODUCTS OF GROUPS
VERBAL WREATH PRODUCTS
SOFIC GROUPS
HYPERLINEAR GROUPS
LINEAR SOFIC GROUPS
WEAKLY SOFIC GROUPS
HAAGERUP PROPERTY
KAZHDAN’S PROPERTY (T)
EXACT GROUPS
topic VERBAL PRODUCTS OF GROUPS
VERBAL WREATH PRODUCTS
SOFIC GROUPS
HYPERLINEAR GROUPS
LINEAR SOFIC GROUPS
WEAKLY SOFIC GROUPS
HAAGERUP PROPERTY
KAZHDAN’S PROPERTY (T)
EXACT GROUPS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv By means of analyzing the notion of verbal products of groups, we show that soficity, hyperlinearity, amenability, the Haagerup property, the Kazhdan property (T), and exactness are preserved under taking k-nilpotent products of groups, while being orderable is not preserved. We also study these properties for solvable and for Burnside products of groups. We then show that if two discrete groups are sofic, or have the Haagerup property, their restricted verbal wreath product arising from nilpotent, solvable, and certain Burnside products is also sofic or has the Haagerup property, respectively. We also prove related results for hyperlinear, linear sofic, and weakly sofic approximations. Finally, we give applications combining our work with the Shmelkin embedding to show that certain quotients of free groups are sofic or have the Haagerup property.
Fil: Brude, Javier Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Sasyk, Roman. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description By means of analyzing the notion of verbal products of groups, we show that soficity, hyperlinearity, amenability, the Haagerup property, the Kazhdan property (T), and exactness are preserved under taking k-nilpotent products of groups, while being orderable is not preserved. We also study these properties for solvable and for Burnside products of groups. We then show that if two discrete groups are sofic, or have the Haagerup property, their restricted verbal wreath product arising from nilpotent, solvable, and certain Burnside products is also sofic or has the Haagerup property, respectively. We also prove related results for hyperlinear, linear sofic, and weakly sofic approximations. Finally, we give applications combining our work with the Shmelkin embedding to show that certain quotients of free groups are sofic or have the Haagerup property.
publishDate 2022
dc.date.none.fl_str_mv 2022-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/202222
Brude, Javier Eugenio; Sasyk, Roman; Permanence properties of verbal products and verbal wreath products of groups; European Mathematical Society; Groups Geometry And Dynamics; 16; 2; 7-2022; 363-401
1661-7207
CONICET Digital
CONICET
url http://hdl.handle.net/11336/202222
identifier_str_mv Brude, Javier Eugenio; Sasyk, Roman; Permanence properties of verbal products and verbal wreath products of groups; European Mathematical Society; Groups Geometry And Dynamics; 16; 2; 7-2022; 363-401
1661-7207
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/ggd/articles/6446556
info:eu-repo/semantics/altIdentifier/doi/10.4171/GGD/665
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1909.07800
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv European Mathematical Society
publisher.none.fl_str_mv European Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269390860451841
score 13.13397