Metric approximations of unrestricted wreath products when the acting group is amenable
- Autores
- Brude, Javier Eugenio; Sasyk, Roman
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give a simple and unified proof showing that the unrestricted wreath product of a weakly sofic, sofic, linear sofic, or hyperlinear group by an amenable group is weakly sofic, sofic, linear sofic, or hyperlinear, respectively. By means of the Kaloujnine-Krasner theorem, this implies that group extensions with amenable quotients preserve the four aforementioned metric approximation properties. We also discuss the case of co-amenable groups.
Fil: Brude, Javier Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Sasyk, Roman. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
AMENABLE GROUPS
HYPERLINEAR GROUPS
LINEAR SOFIC GROUPS
SOFIC GROUPS
UNRESTRICTED WREATH PRODUCTS
WEAKLY SOFIC GROUPS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/149999
Ver los metadatos del registro completo
id |
CONICETDig_1a8e671abab30e206c4c689f84a31570 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/149999 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Metric approximations of unrestricted wreath products when the acting group is amenableBrude, Javier EugenioSasyk, RomanAMENABLE GROUPSHYPERLINEAR GROUPSLINEAR SOFIC GROUPSSOFIC GROUPSUNRESTRICTED WREATH PRODUCTSWEAKLY SOFIC GROUPShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We give a simple and unified proof showing that the unrestricted wreath product of a weakly sofic, sofic, linear sofic, or hyperlinear group by an amenable group is weakly sofic, sofic, linear sofic, or hyperlinear, respectively. By means of the Kaloujnine-Krasner theorem, this implies that group extensions with amenable quotients preserve the four aforementioned metric approximation properties. We also discuss the case of co-amenable groups.Fil: Brude, Javier Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Sasyk, Roman. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaTaylor & Francis2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/149999Brude, Javier Eugenio; Sasyk, Roman; Metric approximations of unrestricted wreath products when the acting group is amenable; Taylor & Francis; Communications In Algebra; 2021; 9-2021; 1-130092-7872CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2021.1976790info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2021.1976790info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2004.05735info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:32Zoai:ri.conicet.gov.ar:11336/149999instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:33.056CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Metric approximations of unrestricted wreath products when the acting group is amenable |
title |
Metric approximations of unrestricted wreath products when the acting group is amenable |
spellingShingle |
Metric approximations of unrestricted wreath products when the acting group is amenable Brude, Javier Eugenio AMENABLE GROUPS HYPERLINEAR GROUPS LINEAR SOFIC GROUPS SOFIC GROUPS UNRESTRICTED WREATH PRODUCTS WEAKLY SOFIC GROUPS |
title_short |
Metric approximations of unrestricted wreath products when the acting group is amenable |
title_full |
Metric approximations of unrestricted wreath products when the acting group is amenable |
title_fullStr |
Metric approximations of unrestricted wreath products when the acting group is amenable |
title_full_unstemmed |
Metric approximations of unrestricted wreath products when the acting group is amenable |
title_sort |
Metric approximations of unrestricted wreath products when the acting group is amenable |
dc.creator.none.fl_str_mv |
Brude, Javier Eugenio Sasyk, Roman |
author |
Brude, Javier Eugenio |
author_facet |
Brude, Javier Eugenio Sasyk, Roman |
author_role |
author |
author2 |
Sasyk, Roman |
author2_role |
author |
dc.subject.none.fl_str_mv |
AMENABLE GROUPS HYPERLINEAR GROUPS LINEAR SOFIC GROUPS SOFIC GROUPS UNRESTRICTED WREATH PRODUCTS WEAKLY SOFIC GROUPS |
topic |
AMENABLE GROUPS HYPERLINEAR GROUPS LINEAR SOFIC GROUPS SOFIC GROUPS UNRESTRICTED WREATH PRODUCTS WEAKLY SOFIC GROUPS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We give a simple and unified proof showing that the unrestricted wreath product of a weakly sofic, sofic, linear sofic, or hyperlinear group by an amenable group is weakly sofic, sofic, linear sofic, or hyperlinear, respectively. By means of the Kaloujnine-Krasner theorem, this implies that group extensions with amenable quotients preserve the four aforementioned metric approximation properties. We also discuss the case of co-amenable groups. Fil: Brude, Javier Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Sasyk, Roman. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
We give a simple and unified proof showing that the unrestricted wreath product of a weakly sofic, sofic, linear sofic, or hyperlinear group by an amenable group is weakly sofic, sofic, linear sofic, or hyperlinear, respectively. By means of the Kaloujnine-Krasner theorem, this implies that group extensions with amenable quotients preserve the four aforementioned metric approximation properties. We also discuss the case of co-amenable groups. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/149999 Brude, Javier Eugenio; Sasyk, Roman; Metric approximations of unrestricted wreath products when the acting group is amenable; Taylor & Francis; Communications In Algebra; 2021; 9-2021; 1-13 0092-7872 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/149999 |
identifier_str_mv |
Brude, Javier Eugenio; Sasyk, Roman; Metric approximations of unrestricted wreath products when the acting group is amenable; Taylor & Francis; Communications In Algebra; 2021; 9-2021; 1-13 0092-7872 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2021.1976790 info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2021.1976790 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2004.05735 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269586527879168 |
score |
13.13397 |