Improved bounds on the dimensions of sets that avoid approximate arithmetic progressions
- Autores
- Fraser, Jonathan M.; Shmerkin, Pablo Sebastian; Yavicoli, Alexia
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We provide quantitative estimates for the supremum of the Hausdorff dimension of sets in the real line which avoid ε-approximations of arithmetic progressions. Some of these estimates are in terms of Szemerédi bounds. In particular, we answer a question of Fraser, Saito and Yu (IMRN 14:4419–4430, 2019) and considerably improve their bounds. We also show that Hausdorff dimension is equivalent to box or Assouad dimension for this problem, and obtain a lower bound for Fourier dimension.
Fil: Fraser, Jonathan M.. University of St. Andrews; Reino Unido
Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. University of British Columbia; Canadá
Fil: Yavicoli, Alexia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of St. Andrews; Reino Unido - Materia
-
ARITHMETIC PROGRESSIONS
FRACTALS
HAUSDORFF DIMENSION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/164764
Ver los metadatos del registro completo
id |
CONICETDig_12556debd08c5d50df6d295c298d853a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/164764 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Improved bounds on the dimensions of sets that avoid approximate arithmetic progressionsFraser, Jonathan M.Shmerkin, Pablo SebastianYavicoli, AlexiaARITHMETIC PROGRESSIONSFRACTALSHAUSDORFF DIMENSIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We provide quantitative estimates for the supremum of the Hausdorff dimension of sets in the real line which avoid ε-approximations of arithmetic progressions. Some of these estimates are in terms of Szemerédi bounds. In particular, we answer a question of Fraser, Saito and Yu (IMRN 14:4419–4430, 2019) and considerably improve their bounds. We also show that Hausdorff dimension is equivalent to box or Assouad dimension for this problem, and obtain a lower bound for Fourier dimension.Fil: Fraser, Jonathan M.. University of St. Andrews; Reino UnidoFil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. University of British Columbia; CanadáFil: Yavicoli, Alexia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of St. Andrews; Reino UnidoBirkhauser Boston Inc2021-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/164764Fraser, Jonathan M.; Shmerkin, Pablo Sebastian; Yavicoli, Alexia; Improved bounds on the dimensions of sets that avoid approximate arithmetic progressions; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 27; 1; 2-2021; 1-141069-58691531-5851CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00041-020-09807-winfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-020-09807-winfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1910.10074v3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:29Zoai:ri.conicet.gov.ar:11336/164764instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:29.377CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Improved bounds on the dimensions of sets that avoid approximate arithmetic progressions |
title |
Improved bounds on the dimensions of sets that avoid approximate arithmetic progressions |
spellingShingle |
Improved bounds on the dimensions of sets that avoid approximate arithmetic progressions Fraser, Jonathan M. ARITHMETIC PROGRESSIONS FRACTALS HAUSDORFF DIMENSION |
title_short |
Improved bounds on the dimensions of sets that avoid approximate arithmetic progressions |
title_full |
Improved bounds on the dimensions of sets that avoid approximate arithmetic progressions |
title_fullStr |
Improved bounds on the dimensions of sets that avoid approximate arithmetic progressions |
title_full_unstemmed |
Improved bounds on the dimensions of sets that avoid approximate arithmetic progressions |
title_sort |
Improved bounds on the dimensions of sets that avoid approximate arithmetic progressions |
dc.creator.none.fl_str_mv |
Fraser, Jonathan M. Shmerkin, Pablo Sebastian Yavicoli, Alexia |
author |
Fraser, Jonathan M. |
author_facet |
Fraser, Jonathan M. Shmerkin, Pablo Sebastian Yavicoli, Alexia |
author_role |
author |
author2 |
Shmerkin, Pablo Sebastian Yavicoli, Alexia |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ARITHMETIC PROGRESSIONS FRACTALS HAUSDORFF DIMENSION |
topic |
ARITHMETIC PROGRESSIONS FRACTALS HAUSDORFF DIMENSION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We provide quantitative estimates for the supremum of the Hausdorff dimension of sets in the real line which avoid ε-approximations of arithmetic progressions. Some of these estimates are in terms of Szemerédi bounds. In particular, we answer a question of Fraser, Saito and Yu (IMRN 14:4419–4430, 2019) and considerably improve their bounds. We also show that Hausdorff dimension is equivalent to box or Assouad dimension for this problem, and obtain a lower bound for Fourier dimension. Fil: Fraser, Jonathan M.. University of St. Andrews; Reino Unido Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. University of British Columbia; Canadá Fil: Yavicoli, Alexia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of St. Andrews; Reino Unido |
description |
We provide quantitative estimates for the supremum of the Hausdorff dimension of sets in the real line which avoid ε-approximations of arithmetic progressions. Some of these estimates are in terms of Szemerédi bounds. In particular, we answer a question of Fraser, Saito and Yu (IMRN 14:4419–4430, 2019) and considerably improve their bounds. We also show that Hausdorff dimension is equivalent to box or Assouad dimension for this problem, and obtain a lower bound for Fourier dimension. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/164764 Fraser, Jonathan M.; Shmerkin, Pablo Sebastian; Yavicoli, Alexia; Improved bounds on the dimensions of sets that avoid approximate arithmetic progressions; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 27; 1; 2-2021; 1-14 1069-5869 1531-5851 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/164764 |
identifier_str_mv |
Fraser, Jonathan M.; Shmerkin, Pablo Sebastian; Yavicoli, Alexia; Improved bounds on the dimensions of sets that avoid approximate arithmetic progressions; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 27; 1; 2-2021; 1-14 1069-5869 1531-5851 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00041-020-09807-w info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-020-09807-w info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1910.10074v3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Boston Inc |
publisher.none.fl_str_mv |
Birkhauser Boston Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613066856071168 |
score |
13.070432 |