Improved bounds for the dimensions of planar distance sets

Autores
Shmerkin, Pablo Sebastian
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We obtain new lower bounds on the Hausdorff dimension of distance sets and pinned distance sets of planar Borel sets of dimension slightly larger than 1, improving recent estimates of Keleti and Shmerkin, and of Liu in this regime. In particular, we prove that if dimH .A/ > 1, then the set of distances spanned by points of A has Hausdorff dimension at least 40=57 > 0:7 and there are many y 2 A such that the pinned distance set 1jx -yjW x 2 Aºhas Hausdorff dimension at least 29=42 and lower box-counting dimension at least 40=57. We use the approach and many results from the earlier work of Keleti and Shmerkin, but incorporate estimates from the recent work of Guth, Iosevich, Ou and Wang as additional input.
Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. University of British Columbia; Canadá
Materia
BOX COUNTING DIMENSION
DISTANCE SETS
FALCONER’S PROBLEM
HAUSDORFF DIMENSION
PINNED DISTANCE SETS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/170509

id CONICETDig_856b3fc2ed12486bb3f50aa637e93872
oai_identifier_str oai:ri.conicet.gov.ar:11336/170509
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Improved bounds for the dimensions of planar distance setsShmerkin, Pablo SebastianBOX COUNTING DIMENSIONDISTANCE SETSFALCONER’S PROBLEMHAUSDORFF DIMENSIONPINNED DISTANCE SETShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We obtain new lower bounds on the Hausdorff dimension of distance sets and pinned distance sets of planar Borel sets of dimension slightly larger than 1, improving recent estimates of Keleti and Shmerkin, and of Liu in this regime. In particular, we prove that if dimH .A/ > 1, then the set of distances spanned by points of A has Hausdorff dimension at least 40=57 > 0:7 and there are many y 2 A such that the pinned distance set 1jx -yjW x 2 Aºhas Hausdorff dimension at least 29=42 and lower box-counting dimension at least 40=57. We use the approach and many results from the earlier work of Keleti and Shmerkin, but incorporate estimates from the recent work of Guth, Iosevich, Ou and Wang as additional input.Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. University of British Columbia; CanadáEuropean Mathematical Society2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/170509Shmerkin, Pablo Sebastian; Improved bounds for the dimensions of planar distance sets; European Mathematical Society; Journal of Fractal Geometry; 8; 1; 12-2020; 27-512308-1309CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/doi/10.4171/JFG/97info:eu-repo/semantics/altIdentifier/doi/10.4171/JFG/97info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:54:30Zoai:ri.conicet.gov.ar:11336/170509instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:54:30.347CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Improved bounds for the dimensions of planar distance sets
title Improved bounds for the dimensions of planar distance sets
spellingShingle Improved bounds for the dimensions of planar distance sets
Shmerkin, Pablo Sebastian
BOX COUNTING DIMENSION
DISTANCE SETS
FALCONER’S PROBLEM
HAUSDORFF DIMENSION
PINNED DISTANCE SETS
title_short Improved bounds for the dimensions of planar distance sets
title_full Improved bounds for the dimensions of planar distance sets
title_fullStr Improved bounds for the dimensions of planar distance sets
title_full_unstemmed Improved bounds for the dimensions of planar distance sets
title_sort Improved bounds for the dimensions of planar distance sets
dc.creator.none.fl_str_mv Shmerkin, Pablo Sebastian
author Shmerkin, Pablo Sebastian
author_facet Shmerkin, Pablo Sebastian
author_role author
dc.subject.none.fl_str_mv BOX COUNTING DIMENSION
DISTANCE SETS
FALCONER’S PROBLEM
HAUSDORFF DIMENSION
PINNED DISTANCE SETS
topic BOX COUNTING DIMENSION
DISTANCE SETS
FALCONER’S PROBLEM
HAUSDORFF DIMENSION
PINNED DISTANCE SETS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We obtain new lower bounds on the Hausdorff dimension of distance sets and pinned distance sets of planar Borel sets of dimension slightly larger than 1, improving recent estimates of Keleti and Shmerkin, and of Liu in this regime. In particular, we prove that if dimH .A/ > 1, then the set of distances spanned by points of A has Hausdorff dimension at least 40=57 > 0:7 and there are many y 2 A such that the pinned distance set 1jx -yjW x 2 Aºhas Hausdorff dimension at least 29=42 and lower box-counting dimension at least 40=57. We use the approach and many results from the earlier work of Keleti and Shmerkin, but incorporate estimates from the recent work of Guth, Iosevich, Ou and Wang as additional input.
Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. University of British Columbia; Canadá
description We obtain new lower bounds on the Hausdorff dimension of distance sets and pinned distance sets of planar Borel sets of dimension slightly larger than 1, improving recent estimates of Keleti and Shmerkin, and of Liu in this regime. In particular, we prove that if dimH .A/ > 1, then the set of distances spanned by points of A has Hausdorff dimension at least 40=57 > 0:7 and there are many y 2 A such that the pinned distance set 1jx -yjW x 2 Aºhas Hausdorff dimension at least 29=42 and lower box-counting dimension at least 40=57. We use the approach and many results from the earlier work of Keleti and Shmerkin, but incorporate estimates from the recent work of Guth, Iosevich, Ou and Wang as additional input.
publishDate 2020
dc.date.none.fl_str_mv 2020-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/170509
Shmerkin, Pablo Sebastian; Improved bounds for the dimensions of planar distance sets; European Mathematical Society; Journal of Fractal Geometry; 8; 1; 12-2020; 27-51
2308-1309
CONICET Digital
CONICET
url http://hdl.handle.net/11336/170509
identifier_str_mv Shmerkin, Pablo Sebastian; Improved bounds for the dimensions of planar distance sets; European Mathematical Society; Journal of Fractal Geometry; 8; 1; 12-2020; 27-51
2308-1309
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/doi/10.4171/JFG/97
info:eu-repo/semantics/altIdentifier/doi/10.4171/JFG/97
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv European Mathematical Society
publisher.none.fl_str_mv European Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613655050584064
score 13.070432