Improved bounds for the dimensions of planar distance sets
- Autores
- Shmerkin, Pablo Sebastian
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We obtain new lower bounds on the Hausdorff dimension of distance sets and pinned distance sets of planar Borel sets of dimension slightly larger than 1, improving recent estimates of Keleti and Shmerkin, and of Liu in this regime. In particular, we prove that if dimH .A/ > 1, then the set of distances spanned by points of A has Hausdorff dimension at least 40=57 > 0:7 and there are many y 2 A such that the pinned distance set 1jx -yjW x 2 Aºhas Hausdorff dimension at least 29=42 and lower box-counting dimension at least 40=57. We use the approach and many results from the earlier work of Keleti and Shmerkin, but incorporate estimates from the recent work of Guth, Iosevich, Ou and Wang as additional input.
Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. University of British Columbia; Canadá - Materia
-
BOX COUNTING DIMENSION
DISTANCE SETS
FALCONER’S PROBLEM
HAUSDORFF DIMENSION
PINNED DISTANCE SETS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/170509
Ver los metadatos del registro completo
id |
CONICETDig_856b3fc2ed12486bb3f50aa637e93872 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/170509 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Improved bounds for the dimensions of planar distance setsShmerkin, Pablo SebastianBOX COUNTING DIMENSIONDISTANCE SETSFALCONER’S PROBLEMHAUSDORFF DIMENSIONPINNED DISTANCE SETShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We obtain new lower bounds on the Hausdorff dimension of distance sets and pinned distance sets of planar Borel sets of dimension slightly larger than 1, improving recent estimates of Keleti and Shmerkin, and of Liu in this regime. In particular, we prove that if dimH .A/ > 1, then the set of distances spanned by points of A has Hausdorff dimension at least 40=57 > 0:7 and there are many y 2 A such that the pinned distance set 1jx -yjW x 2 Aºhas Hausdorff dimension at least 29=42 and lower box-counting dimension at least 40=57. We use the approach and many results from the earlier work of Keleti and Shmerkin, but incorporate estimates from the recent work of Guth, Iosevich, Ou and Wang as additional input.Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. University of British Columbia; CanadáEuropean Mathematical Society2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/170509Shmerkin, Pablo Sebastian; Improved bounds for the dimensions of planar distance sets; European Mathematical Society; Journal of Fractal Geometry; 8; 1; 12-2020; 27-512308-1309CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/doi/10.4171/JFG/97info:eu-repo/semantics/altIdentifier/doi/10.4171/JFG/97info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:54:30Zoai:ri.conicet.gov.ar:11336/170509instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:54:30.347CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Improved bounds for the dimensions of planar distance sets |
title |
Improved bounds for the dimensions of planar distance sets |
spellingShingle |
Improved bounds for the dimensions of planar distance sets Shmerkin, Pablo Sebastian BOX COUNTING DIMENSION DISTANCE SETS FALCONER’S PROBLEM HAUSDORFF DIMENSION PINNED DISTANCE SETS |
title_short |
Improved bounds for the dimensions of planar distance sets |
title_full |
Improved bounds for the dimensions of planar distance sets |
title_fullStr |
Improved bounds for the dimensions of planar distance sets |
title_full_unstemmed |
Improved bounds for the dimensions of planar distance sets |
title_sort |
Improved bounds for the dimensions of planar distance sets |
dc.creator.none.fl_str_mv |
Shmerkin, Pablo Sebastian |
author |
Shmerkin, Pablo Sebastian |
author_facet |
Shmerkin, Pablo Sebastian |
author_role |
author |
dc.subject.none.fl_str_mv |
BOX COUNTING DIMENSION DISTANCE SETS FALCONER’S PROBLEM HAUSDORFF DIMENSION PINNED DISTANCE SETS |
topic |
BOX COUNTING DIMENSION DISTANCE SETS FALCONER’S PROBLEM HAUSDORFF DIMENSION PINNED DISTANCE SETS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We obtain new lower bounds on the Hausdorff dimension of distance sets and pinned distance sets of planar Borel sets of dimension slightly larger than 1, improving recent estimates of Keleti and Shmerkin, and of Liu in this regime. In particular, we prove that if dimH .A/ > 1, then the set of distances spanned by points of A has Hausdorff dimension at least 40=57 > 0:7 and there are many y 2 A such that the pinned distance set 1jx -yjW x 2 Aºhas Hausdorff dimension at least 29=42 and lower box-counting dimension at least 40=57. We use the approach and many results from the earlier work of Keleti and Shmerkin, but incorporate estimates from the recent work of Guth, Iosevich, Ou and Wang as additional input. Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. University of British Columbia; Canadá |
description |
We obtain new lower bounds on the Hausdorff dimension of distance sets and pinned distance sets of planar Borel sets of dimension slightly larger than 1, improving recent estimates of Keleti and Shmerkin, and of Liu in this regime. In particular, we prove that if dimH .A/ > 1, then the set of distances spanned by points of A has Hausdorff dimension at least 40=57 > 0:7 and there are many y 2 A such that the pinned distance set 1jx -yjW x 2 Aºhas Hausdorff dimension at least 29=42 and lower box-counting dimension at least 40=57. We use the approach and many results from the earlier work of Keleti and Shmerkin, but incorporate estimates from the recent work of Guth, Iosevich, Ou and Wang as additional input. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/170509 Shmerkin, Pablo Sebastian; Improved bounds for the dimensions of planar distance sets; European Mathematical Society; Journal of Fractal Geometry; 8; 1; 12-2020; 27-51 2308-1309 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/170509 |
identifier_str_mv |
Shmerkin, Pablo Sebastian; Improved bounds for the dimensions of planar distance sets; European Mathematical Society; Journal of Fractal Geometry; 8; 1; 12-2020; 27-51 2308-1309 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/doi/10.4171/JFG/97 info:eu-repo/semantics/altIdentifier/doi/10.4171/JFG/97 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
European Mathematical Society |
publisher.none.fl_str_mv |
European Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613655050584064 |
score |
13.070432 |