Salem Sets with No Arithmetic Progressions
- Autores
- Shmerkin, Pablo Sebastian
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We construct compact Salem sets in R/Z of any dimension (including 1), which do not contain any arithmetic progressions of length 3. Moreover, the sets can be taken to be Ahlfors regular if the dimension is less than 1, and the measure witnessing the Fourier decay can be taken to be Frostman in the case of dimension 1. This is in sharp contrast to the situation in the discrete setting (where Fourier uniformity is well known to imply existence of progressions) and helps clarify a result of Łaba and Pramanik on pseudo-random subsets of R which do contain progressions.
Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
ARITHMETIC PROGRESSIONS
SALEM SETS
PSEUDO-RANDOMNESS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/72608
Ver los metadatos del registro completo
id |
CONICETDig_77fa757e8a04fbbd2f05f55a07314dd1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/72608 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Salem Sets with No Arithmetic ProgressionsShmerkin, Pablo SebastianARITHMETIC PROGRESSIONSSALEM SETSPSEUDO-RANDOMNESShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We construct compact Salem sets in R/Z of any dimension (including 1), which do not contain any arithmetic progressions of length 3. Moreover, the sets can be taken to be Ahlfors regular if the dimension is less than 1, and the measure witnessing the Fourier decay can be taken to be Frostman in the case of dimension 1. This is in sharp contrast to the situation in the discrete setting (where Fourier uniformity is well known to imply existence of progressions) and helps clarify a result of Łaba and Pramanik on pseudo-random subsets of R which do contain progressions.Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaOxford University Press2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72608Shmerkin, Pablo Sebastian; Salem Sets with No Arithmetic Progressions; Oxford University Press; International Mathematics Research Notices; 2017; 7; 4-2017; 1929-19411073-7928CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1510.07596info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnw097info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2017/7/1929/3060565info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:29Zoai:ri.conicet.gov.ar:11336/72608instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:29.855CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Salem Sets with No Arithmetic Progressions |
title |
Salem Sets with No Arithmetic Progressions |
spellingShingle |
Salem Sets with No Arithmetic Progressions Shmerkin, Pablo Sebastian ARITHMETIC PROGRESSIONS SALEM SETS PSEUDO-RANDOMNESS |
title_short |
Salem Sets with No Arithmetic Progressions |
title_full |
Salem Sets with No Arithmetic Progressions |
title_fullStr |
Salem Sets with No Arithmetic Progressions |
title_full_unstemmed |
Salem Sets with No Arithmetic Progressions |
title_sort |
Salem Sets with No Arithmetic Progressions |
dc.creator.none.fl_str_mv |
Shmerkin, Pablo Sebastian |
author |
Shmerkin, Pablo Sebastian |
author_facet |
Shmerkin, Pablo Sebastian |
author_role |
author |
dc.subject.none.fl_str_mv |
ARITHMETIC PROGRESSIONS SALEM SETS PSEUDO-RANDOMNESS |
topic |
ARITHMETIC PROGRESSIONS SALEM SETS PSEUDO-RANDOMNESS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We construct compact Salem sets in R/Z of any dimension (including 1), which do not contain any arithmetic progressions of length 3. Moreover, the sets can be taken to be Ahlfors regular if the dimension is less than 1, and the measure witnessing the Fourier decay can be taken to be Frostman in the case of dimension 1. This is in sharp contrast to the situation in the discrete setting (where Fourier uniformity is well known to imply existence of progressions) and helps clarify a result of Łaba and Pramanik on pseudo-random subsets of R which do contain progressions. Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We construct compact Salem sets in R/Z of any dimension (including 1), which do not contain any arithmetic progressions of length 3. Moreover, the sets can be taken to be Ahlfors regular if the dimension is less than 1, and the measure witnessing the Fourier decay can be taken to be Frostman in the case of dimension 1. This is in sharp contrast to the situation in the discrete setting (where Fourier uniformity is well known to imply existence of progressions) and helps clarify a result of Łaba and Pramanik on pseudo-random subsets of R which do contain progressions. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/72608 Shmerkin, Pablo Sebastian; Salem Sets with No Arithmetic Progressions; Oxford University Press; International Mathematics Research Notices; 2017; 7; 4-2017; 1929-1941 1073-7928 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/72608 |
identifier_str_mv |
Shmerkin, Pablo Sebastian; Salem Sets with No Arithmetic Progressions; Oxford University Press; International Mathematics Research Notices; 2017; 7; 4-2017; 1929-1941 1073-7928 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1510.07596 info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnw097 info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2017/7/1929/3060565 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268605772726272 |
score |
13.13397 |