Separation properties for iterated function systems of bounded distortion
- Autores
- Panzone, Pablo Andres; Ferrari, Mariano Andrés
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study a general separation property for subsystems G, whose attractor KG is a sub-self-similar set. This is a generalization of the Lau-Ngai weak separation property for the bounded distortion case. For subsystems with positive Hausdorff measure in its similarity dimension, we characterize the subsets of KG with positive measure where the separation property may fail. We exhibit two examples of fractal sets, one not satisfying the weak separation property and whose existence was questioned by Zerner, the other having positive Hausdorff measure in its dimension and with the separation property failing on a subset of positive measure.
Fil: Panzone, Pablo Andres. Universidad Nacional de la Patagonia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina
Fil: Ferrari, Mariano Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina - Materia
-
FRACTALS
HAUSDORFF DIMENSION
OVERLAPPING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15458
Ver los metadatos del registro completo
id |
CONICETDig_5ee38d75f40fa8cd5648317daaf5f483 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15458 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Separation properties for iterated function systems of bounded distortionPanzone, Pablo AndresFerrari, Mariano AndrésFRACTALSHAUSDORFF DIMENSIONOVERLAPPINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study a general separation property for subsystems G, whose attractor KG is a sub-self-similar set. This is a generalization of the Lau-Ngai weak separation property for the bounded distortion case. For subsystems with positive Hausdorff measure in its similarity dimension, we characterize the subsets of KG with positive measure where the separation property may fail. We exhibit two examples of fractal sets, one not satisfying the weak separation property and whose existence was questioned by Zerner, the other having positive Hausdorff measure in its dimension and with the separation property failing on a subset of positive measure.Fil: Panzone, Pablo Andres. Universidad Nacional de la Patagonia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Ferrari, Mariano Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaWorld Scientific2011-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15458Panzone, Pablo Andres; Ferrari, Mariano Andrés; Separation properties for iterated function systems of bounded distortion; World Scientific; Fractals; 19; 3; 9-2011; 259-2690218-348Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0218348X11005361info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0218348X11005361info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:05Zoai:ri.conicet.gov.ar:11336/15458instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:05.435CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Separation properties for iterated function systems of bounded distortion |
title |
Separation properties for iterated function systems of bounded distortion |
spellingShingle |
Separation properties for iterated function systems of bounded distortion Panzone, Pablo Andres FRACTALS HAUSDORFF DIMENSION OVERLAPPING |
title_short |
Separation properties for iterated function systems of bounded distortion |
title_full |
Separation properties for iterated function systems of bounded distortion |
title_fullStr |
Separation properties for iterated function systems of bounded distortion |
title_full_unstemmed |
Separation properties for iterated function systems of bounded distortion |
title_sort |
Separation properties for iterated function systems of bounded distortion |
dc.creator.none.fl_str_mv |
Panzone, Pablo Andres Ferrari, Mariano Andrés |
author |
Panzone, Pablo Andres |
author_facet |
Panzone, Pablo Andres Ferrari, Mariano Andrés |
author_role |
author |
author2 |
Ferrari, Mariano Andrés |
author2_role |
author |
dc.subject.none.fl_str_mv |
FRACTALS HAUSDORFF DIMENSION OVERLAPPING |
topic |
FRACTALS HAUSDORFF DIMENSION OVERLAPPING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we study a general separation property for subsystems G, whose attractor KG is a sub-self-similar set. This is a generalization of the Lau-Ngai weak separation property for the bounded distortion case. For subsystems with positive Hausdorff measure in its similarity dimension, we characterize the subsets of KG with positive measure where the separation property may fail. We exhibit two examples of fractal sets, one not satisfying the weak separation property and whose existence was questioned by Zerner, the other having positive Hausdorff measure in its dimension and with the separation property failing on a subset of positive measure. Fil: Panzone, Pablo Andres. Universidad Nacional de la Patagonia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina Fil: Ferrari, Mariano Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina |
description |
In this paper we study a general separation property for subsystems G, whose attractor KG is a sub-self-similar set. This is a generalization of the Lau-Ngai weak separation property for the bounded distortion case. For subsystems with positive Hausdorff measure in its similarity dimension, we characterize the subsets of KG with positive measure where the separation property may fail. We exhibit two examples of fractal sets, one not satisfying the weak separation property and whose existence was questioned by Zerner, the other having positive Hausdorff measure in its dimension and with the separation property failing on a subset of positive measure. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15458 Panzone, Pablo Andres; Ferrari, Mariano Andrés; Separation properties for iterated function systems of bounded distortion; World Scientific; Fractals; 19; 3; 9-2011; 259-269 0218-348X |
url |
http://hdl.handle.net/11336/15458 |
identifier_str_mv |
Panzone, Pablo Andres; Ferrari, Mariano Andrés; Separation properties for iterated function systems of bounded distortion; World Scientific; Fractals; 19; 3; 9-2011; 259-269 0218-348X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218348X11005361 info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0218348X11005361 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268901886394368 |
score |
13.13397 |