The least prime in certain arithmetic progressions
- Autores
- Sabia, Juan Vicente Rafael; Tesauri, Susana
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Dirichlet’s theorem states that, if a and n are relatively prime integers, there are infinitely many primes in the arithmetic progression n + a, 2n + a, 3n + a,.... However, the known proofs of this general result are not elementary (see [1, 10, 12], for example). Linnik [4, 5] proved that, if 1 ≤ a < n, there are absolute constants c1 and c2 so that the least prime p in such a progression satisfies p ≤ c1nc2 , but his proof is not elementary either. There are several different proofs of Dirichlet’s theorem for the particular case a = 1 (see for example [2, 6, 9, 11]). In [7], moreover, the bound p < n3n for the least prime satisfying p ≡ 1 (mod n) is given. Our aim is to use an elementary argument, which also shows that there are infinitely many primes ≡ 1 (mod n), to prove that the least such prime lies below (3n − 1)/2.
Fil: Sabia, Juan Vicente Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Tesauri, Susana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina - Materia
-
PRIME NUMBERS
ARITHMETIC PROGRESSIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/156292
Ver los metadatos del registro completo
id |
CONICETDig_a9904c0efa88dce9e8bf562ebdc81ce7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/156292 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The least prime in certain arithmetic progressionsSabia, Juan Vicente RafaelTesauri, SusanaPRIME NUMBERSARITHMETIC PROGRESSIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Dirichlet’s theorem states that, if a and n are relatively prime integers, there are infinitely many primes in the arithmetic progression n + a, 2n + a, 3n + a,.... However, the known proofs of this general result are not elementary (see [1, 10, 12], for example). Linnik [4, 5] proved that, if 1 ≤ a < n, there are absolute constants c1 and c2 so that the least prime p in such a progression satisfies p ≤ c1nc2 , but his proof is not elementary either. There are several different proofs of Dirichlet’s theorem for the particular case a = 1 (see for example [2, 6, 9, 11]). In [7], moreover, the bound p < n3n for the least prime satisfying p ≡ 1 (mod n) is given. Our aim is to use an elementary argument, which also shows that there are infinitely many primes ≡ 1 (mod n), to prove that the least such prime lies below (3n − 1)/2.Fil: Sabia, Juan Vicente Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Tesauri, Susana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaMathematical Association of America2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/156292Sabia, Juan Vicente Rafael; Tesauri, Susana; The least prime in certain arithmetic progressions; Mathematical Association of America; The American Mathematical Monthly; 116; 7; 12-2009; 641-6430002-9890CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/00029890.2009.11920982info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/00029890.2009.11920982info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:50Zoai:ri.conicet.gov.ar:11336/156292instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:50.413CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The least prime in certain arithmetic progressions |
title |
The least prime in certain arithmetic progressions |
spellingShingle |
The least prime in certain arithmetic progressions Sabia, Juan Vicente Rafael PRIME NUMBERS ARITHMETIC PROGRESSIONS |
title_short |
The least prime in certain arithmetic progressions |
title_full |
The least prime in certain arithmetic progressions |
title_fullStr |
The least prime in certain arithmetic progressions |
title_full_unstemmed |
The least prime in certain arithmetic progressions |
title_sort |
The least prime in certain arithmetic progressions |
dc.creator.none.fl_str_mv |
Sabia, Juan Vicente Rafael Tesauri, Susana |
author |
Sabia, Juan Vicente Rafael |
author_facet |
Sabia, Juan Vicente Rafael Tesauri, Susana |
author_role |
author |
author2 |
Tesauri, Susana |
author2_role |
author |
dc.subject.none.fl_str_mv |
PRIME NUMBERS ARITHMETIC PROGRESSIONS |
topic |
PRIME NUMBERS ARITHMETIC PROGRESSIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Dirichlet’s theorem states that, if a and n are relatively prime integers, there are infinitely many primes in the arithmetic progression n + a, 2n + a, 3n + a,.... However, the known proofs of this general result are not elementary (see [1, 10, 12], for example). Linnik [4, 5] proved that, if 1 ≤ a < n, there are absolute constants c1 and c2 so that the least prime p in such a progression satisfies p ≤ c1nc2 , but his proof is not elementary either. There are several different proofs of Dirichlet’s theorem for the particular case a = 1 (see for example [2, 6, 9, 11]). In [7], moreover, the bound p < n3n for the least prime satisfying p ≡ 1 (mod n) is given. Our aim is to use an elementary argument, which also shows that there are infinitely many primes ≡ 1 (mod n), to prove that the least such prime lies below (3n − 1)/2. Fil: Sabia, Juan Vicente Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Tesauri, Susana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina |
description |
Dirichlet’s theorem states that, if a and n are relatively prime integers, there are infinitely many primes in the arithmetic progression n + a, 2n + a, 3n + a,.... However, the known proofs of this general result are not elementary (see [1, 10, 12], for example). Linnik [4, 5] proved that, if 1 ≤ a < n, there are absolute constants c1 and c2 so that the least prime p in such a progression satisfies p ≤ c1nc2 , but his proof is not elementary either. There are several different proofs of Dirichlet’s theorem for the particular case a = 1 (see for example [2, 6, 9, 11]). In [7], moreover, the bound p < n3n for the least prime satisfying p ≡ 1 (mod n) is given. Our aim is to use an elementary argument, which also shows that there are infinitely many primes ≡ 1 (mod n), to prove that the least such prime lies below (3n − 1)/2. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/156292 Sabia, Juan Vicente Rafael; Tesauri, Susana; The least prime in certain arithmetic progressions; Mathematical Association of America; The American Mathematical Monthly; 116; 7; 12-2009; 641-643 0002-9890 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/156292 |
identifier_str_mv |
Sabia, Juan Vicente Rafael; Tesauri, Susana; The least prime in certain arithmetic progressions; Mathematical Association of America; The American Mathematical Monthly; 116; 7; 12-2009; 641-643 0002-9890 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/00029890.2009.11920982 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/00029890.2009.11920982 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Mathematical Association of America |
publisher.none.fl_str_mv |
Mathematical Association of America |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268691948896256 |
score |
13.13397 |