Strongly smooth paths of idempotents
- Autores
- Andruchow, Esteban
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is shown that a curve q(t), t ∈ I (0 ∈ I) of idempotent operators on a Banach space X, which verifies that for each ξ ∈ X, the map t → q(t)ξ ∈ X is continuously differentiable, can be lifted by means of a regular curve Gt, of invertible operators in X: q(t) = Gtq(0)G−1 t , t ∈ I. This is done by using the transport equation of the Grassmannian manifold, introduced by Corach, Porta and Recht. We apply this result to the case when the idempotents are conditional expectations of a C∗ algebra A onto a field of C∗-subalgebras Bt ⊂ A. In this case the invertible operators, restricted to B0, induce C∗-isomorphisms between B0 and Bt. We examine the regularity condition imposed on the curve of expectations, in the case when these expectations are induced by discrete decompositions of a Hilbert space (also called systems of projectors in the literature).
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina - Materia
-
Curves of Idempotents
Projections
Conditional Expectations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/20227
Ver los metadatos del registro completo
id |
CONICETDig_1087df7b0b891ab1324b273d54bc95b2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/20227 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Strongly smooth paths of idempotentsAndruchow, EstebanCurves of IdempotentsProjectionsConditional Expectationshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It is shown that a curve q(t), t ∈ I (0 ∈ I) of idempotent operators on a Banach space X, which verifies that for each ξ ∈ X, the map t → q(t)ξ ∈ X is continuously differentiable, can be lifted by means of a regular curve Gt, of invertible operators in X: q(t) = Gtq(0)G−1 t , t ∈ I. This is done by using the transport equation of the Grassmannian manifold, introduced by Corach, Porta and Recht. We apply this result to the case when the idempotents are conditional expectations of a C∗ algebra A onto a field of C∗-subalgebras Bt ⊂ A. In this case the invertible operators, restricted to B0, induce C∗-isomorphisms between B0 and Bt. We examine the regularity condition imposed on the curve of expectations, in the case when these expectations are induced by discrete decompositions of a Hilbert space (also called systems of projectors in the literature).Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaElsevier2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20227Andruchow, Esteban; Strongly smooth paths of idempotents; Elsevier; Journal Of Mathematical Analysis And Applications; 378; 1; 6-2011; 252-2670022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X1000644Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2010.08.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:22:16Zoai:ri.conicet.gov.ar:11336/20227instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:22:16.627CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Strongly smooth paths of idempotents |
title |
Strongly smooth paths of idempotents |
spellingShingle |
Strongly smooth paths of idempotents Andruchow, Esteban Curves of Idempotents Projections Conditional Expectations |
title_short |
Strongly smooth paths of idempotents |
title_full |
Strongly smooth paths of idempotents |
title_fullStr |
Strongly smooth paths of idempotents |
title_full_unstemmed |
Strongly smooth paths of idempotents |
title_sort |
Strongly smooth paths of idempotents |
dc.creator.none.fl_str_mv |
Andruchow, Esteban |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban |
author_role |
author |
dc.subject.none.fl_str_mv |
Curves of Idempotents Projections Conditional Expectations |
topic |
Curves of Idempotents Projections Conditional Expectations |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
It is shown that a curve q(t), t ∈ I (0 ∈ I) of idempotent operators on a Banach space X, which verifies that for each ξ ∈ X, the map t → q(t)ξ ∈ X is continuously differentiable, can be lifted by means of a regular curve Gt, of invertible operators in X: q(t) = Gtq(0)G−1 t , t ∈ I. This is done by using the transport equation of the Grassmannian manifold, introduced by Corach, Porta and Recht. We apply this result to the case when the idempotents are conditional expectations of a C∗ algebra A onto a field of C∗-subalgebras Bt ⊂ A. In this case the invertible operators, restricted to B0, induce C∗-isomorphisms between B0 and Bt. We examine the regularity condition imposed on the curve of expectations, in the case when these expectations are induced by discrete decompositions of a Hilbert space (also called systems of projectors in the literature). Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina |
description |
It is shown that a curve q(t), t ∈ I (0 ∈ I) of idempotent operators on a Banach space X, which verifies that for each ξ ∈ X, the map t → q(t)ξ ∈ X is continuously differentiable, can be lifted by means of a regular curve Gt, of invertible operators in X: q(t) = Gtq(0)G−1 t , t ∈ I. This is done by using the transport equation of the Grassmannian manifold, introduced by Corach, Porta and Recht. We apply this result to the case when the idempotents are conditional expectations of a C∗ algebra A onto a field of C∗-subalgebras Bt ⊂ A. In this case the invertible operators, restricted to B0, induce C∗-isomorphisms between B0 and Bt. We examine the regularity condition imposed on the curve of expectations, in the case when these expectations are induced by discrete decompositions of a Hilbert space (also called systems of projectors in the literature). |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/20227 Andruchow, Esteban; Strongly smooth paths of idempotents; Elsevier; Journal Of Mathematical Analysis And Applications; 378; 1; 6-2011; 252-267 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/20227 |
identifier_str_mv |
Andruchow, Esteban; Strongly smooth paths of idempotents; Elsevier; Journal Of Mathematical Analysis And Applications; 378; 1; 6-2011; 252-267 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X1000644X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2010.08.010 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082620426813440 |
score |
13.22299 |