Strongly smooth paths of idempotents

Autores
Andruchow, Esteban
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It is shown that a curve q(t), t ∈ I (0 ∈ I) of idempotent operators on a Banach space X, which verifies that for each ξ ∈ X, the map t → q(t)ξ ∈ X is continuously differentiable, can be lifted by means of a regular curve Gt, of invertible operators in X: q(t) = Gtq(0)G−1 t , t ∈ I. This is done by using the transport equation of the Grassmannian manifold, introduced by Corach, Porta and Recht. We apply this result to the case when the idempotents are conditional expectations of a C∗ algebra A onto a field of C∗-subalgebras Bt ⊂ A. In this case the invertible operators, restricted to B0, induce C∗-isomorphisms between B0 and Bt. We examine the regularity condition imposed on the curve of expectations, in the case when these expectations are induced by discrete decompositions of a Hilbert space (also called systems of projectors in the literature).
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Materia
Curves of Idempotents
Projections
Conditional Expectations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20227

id CONICETDig_1087df7b0b891ab1324b273d54bc95b2
oai_identifier_str oai:ri.conicet.gov.ar:11336/20227
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Strongly smooth paths of idempotentsAndruchow, EstebanCurves of IdempotentsProjectionsConditional Expectationshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It is shown that a curve q(t), t ∈ I (0 ∈ I) of idempotent operators on a Banach space X, which verifies that for each ξ ∈ X, the map t → q(t)ξ ∈ X is continuously differentiable, can be lifted by means of a regular curve Gt, of invertible operators in X: q(t) = Gtq(0)G−1 t , t ∈ I. This is done by using the transport equation of the Grassmannian manifold, introduced by Corach, Porta and Recht. We apply this result to the case when the idempotents are conditional expectations of a C∗ algebra A onto a field of C∗-subalgebras Bt ⊂ A. In this case the invertible operators, restricted to B0, induce C∗-isomorphisms between B0 and Bt. We examine the regularity condition imposed on the curve of expectations, in the case when these expectations are induced by discrete decompositions of a Hilbert space (also called systems of projectors in the literature).Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaElsevier2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20227Andruchow, Esteban; Strongly smooth paths of idempotents; Elsevier; Journal Of Mathematical Analysis And Applications; 378; 1; 6-2011; 252-2670022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X1000644Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2010.08.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:22:16Zoai:ri.conicet.gov.ar:11336/20227instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:22:16.627CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Strongly smooth paths of idempotents
title Strongly smooth paths of idempotents
spellingShingle Strongly smooth paths of idempotents
Andruchow, Esteban
Curves of Idempotents
Projections
Conditional Expectations
title_short Strongly smooth paths of idempotents
title_full Strongly smooth paths of idempotents
title_fullStr Strongly smooth paths of idempotents
title_full_unstemmed Strongly smooth paths of idempotents
title_sort Strongly smooth paths of idempotents
dc.creator.none.fl_str_mv Andruchow, Esteban
author Andruchow, Esteban
author_facet Andruchow, Esteban
author_role author
dc.subject.none.fl_str_mv Curves of Idempotents
Projections
Conditional Expectations
topic Curves of Idempotents
Projections
Conditional Expectations
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv It is shown that a curve q(t), t ∈ I (0 ∈ I) of idempotent operators on a Banach space X, which verifies that for each ξ ∈ X, the map t → q(t)ξ ∈ X is continuously differentiable, can be lifted by means of a regular curve Gt, of invertible operators in X: q(t) = Gtq(0)G−1 t , t ∈ I. This is done by using the transport equation of the Grassmannian manifold, introduced by Corach, Porta and Recht. We apply this result to the case when the idempotents are conditional expectations of a C∗ algebra A onto a field of C∗-subalgebras Bt ⊂ A. In this case the invertible operators, restricted to B0, induce C∗-isomorphisms between B0 and Bt. We examine the regularity condition imposed on the curve of expectations, in the case when these expectations are induced by discrete decompositions of a Hilbert space (also called systems of projectors in the literature).
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
description It is shown that a curve q(t), t ∈ I (0 ∈ I) of idempotent operators on a Banach space X, which verifies that for each ξ ∈ X, the map t → q(t)ξ ∈ X is continuously differentiable, can be lifted by means of a regular curve Gt, of invertible operators in X: q(t) = Gtq(0)G−1 t , t ∈ I. This is done by using the transport equation of the Grassmannian manifold, introduced by Corach, Porta and Recht. We apply this result to the case when the idempotents are conditional expectations of a C∗ algebra A onto a field of C∗-subalgebras Bt ⊂ A. In this case the invertible operators, restricted to B0, induce C∗-isomorphisms between B0 and Bt. We examine the regularity condition imposed on the curve of expectations, in the case when these expectations are induced by discrete decompositions of a Hilbert space (also called systems of projectors in the literature).
publishDate 2011
dc.date.none.fl_str_mv 2011-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20227
Andruchow, Esteban; Strongly smooth paths of idempotents; Elsevier; Journal Of Mathematical Analysis And Applications; 378; 1; 6-2011; 252-267
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20227
identifier_str_mv Andruchow, Esteban; Strongly smooth paths of idempotents; Elsevier; Journal Of Mathematical Analysis And Applications; 378; 1; 6-2011; 252-267
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X1000644X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2010.08.010
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082620426813440
score 13.22299