Classes of Idempotents in Hilbert Space

Autores
Andruchow, Esteban
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
An idempotent operator E in a Hilbert space H(E2= 1) is written as a 2 × 2 matrix in terms of the orthogonal decomposition H=R(E)⊕R(E)⊥(R(E) is the range of E) as (Formula Presented). We study the sets of idempotents that one obtains when E1 , 2: R(E)⊥→ R(E) is a special type of operator: compact, Fredholm and injective with dense range, among others.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Materia
IDEMPOTENT OPERATORS
PROJECTIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20211

id CONICETDig_2c43087d8a0aa087f0d8e29ae4359857
oai_identifier_str oai:ri.conicet.gov.ar:11336/20211
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Classes of Idempotents in Hilbert SpaceAndruchow, EstebanIDEMPOTENT OPERATORSPROJECTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1An idempotent operator E in a Hilbert space H(E2= 1) is written as a 2 × 2 matrix in terms of the orthogonal decomposition H=R(E)⊕R(E)⊥(R(E) is the range of E) as (Formula Presented). We study the sets of idempotents that one obtains when E1 , 2: R(E)⊥→ R(E) is a special type of operator: compact, Fredholm and injective with dense range, among others.Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaSpringer2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20211Andruchow, Esteban; Classes of Idempotents in Hilbert Space; Springer; Complex Analysis And Operator Theory; 10; 6; 8-2016; 1383-14091661-8254CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11785-016-0546-3info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11785-016-0546-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:22Zoai:ri.conicet.gov.ar:11336/20211instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:22.547CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Classes of Idempotents in Hilbert Space
title Classes of Idempotents in Hilbert Space
spellingShingle Classes of Idempotents in Hilbert Space
Andruchow, Esteban
IDEMPOTENT OPERATORS
PROJECTIONS
title_short Classes of Idempotents in Hilbert Space
title_full Classes of Idempotents in Hilbert Space
title_fullStr Classes of Idempotents in Hilbert Space
title_full_unstemmed Classes of Idempotents in Hilbert Space
title_sort Classes of Idempotents in Hilbert Space
dc.creator.none.fl_str_mv Andruchow, Esteban
author Andruchow, Esteban
author_facet Andruchow, Esteban
author_role author
dc.subject.none.fl_str_mv IDEMPOTENT OPERATORS
PROJECTIONS
topic IDEMPOTENT OPERATORS
PROJECTIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv An idempotent operator E in a Hilbert space H(E2= 1) is written as a 2 × 2 matrix in terms of the orthogonal decomposition H=R(E)⊕R(E)⊥(R(E) is the range of E) as (Formula Presented). We study the sets of idempotents that one obtains when E1 , 2: R(E)⊥→ R(E) is a special type of operator: compact, Fredholm and injective with dense range, among others.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
description An idempotent operator E in a Hilbert space H(E2= 1) is written as a 2 × 2 matrix in terms of the orthogonal decomposition H=R(E)⊕R(E)⊥(R(E) is the range of E) as (Formula Presented). We study the sets of idempotents that one obtains when E1 , 2: R(E)⊥→ R(E) is a special type of operator: compact, Fredholm and injective with dense range, among others.
publishDate 2016
dc.date.none.fl_str_mv 2016-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20211
Andruchow, Esteban; Classes of Idempotents in Hilbert Space; Springer; Complex Analysis And Operator Theory; 10; 6; 8-2016; 1383-1409
1661-8254
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20211
identifier_str_mv Andruchow, Esteban; Classes of Idempotents in Hilbert Space; Springer; Complex Analysis And Operator Theory; 10; 6; 8-2016; 1383-1409
1661-8254
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s11785-016-0546-3
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11785-016-0546-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613806493270016
score 13.070432