Classes of Idempotents in Hilbert Space
- Autores
- Andruchow, Esteban
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An idempotent operator E in a Hilbert space H(E2= 1) is written as a 2 × 2 matrix in terms of the orthogonal decomposition H=R(E)⊕R(E)⊥(R(E) is the range of E) as (Formula Presented). We study the sets of idempotents that one obtains when E1 , 2: R(E)⊥→ R(E) is a special type of operator: compact, Fredholm and injective with dense range, among others.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina - Materia
-
IDEMPOTENT OPERATORS
PROJECTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/20211
Ver los metadatos del registro completo
id |
CONICETDig_2c43087d8a0aa087f0d8e29ae4359857 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/20211 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Classes of Idempotents in Hilbert SpaceAndruchow, EstebanIDEMPOTENT OPERATORSPROJECTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1An idempotent operator E in a Hilbert space H(E2= 1) is written as a 2 × 2 matrix in terms of the orthogonal decomposition H=R(E)⊕R(E)⊥(R(E) is the range of E) as (Formula Presented). We study the sets of idempotents that one obtains when E1 , 2: R(E)⊥→ R(E) is a special type of operator: compact, Fredholm and injective with dense range, among others.Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaSpringer2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20211Andruchow, Esteban; Classes of Idempotents in Hilbert Space; Springer; Complex Analysis And Operator Theory; 10; 6; 8-2016; 1383-14091661-8254CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11785-016-0546-3info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11785-016-0546-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:22Zoai:ri.conicet.gov.ar:11336/20211instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:22.547CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Classes of Idempotents in Hilbert Space |
title |
Classes of Idempotents in Hilbert Space |
spellingShingle |
Classes of Idempotents in Hilbert Space Andruchow, Esteban IDEMPOTENT OPERATORS PROJECTIONS |
title_short |
Classes of Idempotents in Hilbert Space |
title_full |
Classes of Idempotents in Hilbert Space |
title_fullStr |
Classes of Idempotents in Hilbert Space |
title_full_unstemmed |
Classes of Idempotents in Hilbert Space |
title_sort |
Classes of Idempotents in Hilbert Space |
dc.creator.none.fl_str_mv |
Andruchow, Esteban |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban |
author_role |
author |
dc.subject.none.fl_str_mv |
IDEMPOTENT OPERATORS PROJECTIONS |
topic |
IDEMPOTENT OPERATORS PROJECTIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
An idempotent operator E in a Hilbert space H(E2= 1) is written as a 2 × 2 matrix in terms of the orthogonal decomposition H=R(E)⊕R(E)⊥(R(E) is the range of E) as (Formula Presented). We study the sets of idempotents that one obtains when E1 , 2: R(E)⊥→ R(E) is a special type of operator: compact, Fredholm and injective with dense range, among others. Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina |
description |
An idempotent operator E in a Hilbert space H(E2= 1) is written as a 2 × 2 matrix in terms of the orthogonal decomposition H=R(E)⊕R(E)⊥(R(E) is the range of E) as (Formula Presented). We study the sets of idempotents that one obtains when E1 , 2: R(E)⊥→ R(E) is a special type of operator: compact, Fredholm and injective with dense range, among others. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/20211 Andruchow, Esteban; Classes of Idempotents in Hilbert Space; Springer; Complex Analysis And Operator Theory; 10; 6; 8-2016; 1383-1409 1661-8254 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/20211 |
identifier_str_mv |
Andruchow, Esteban; Classes of Idempotents in Hilbert Space; Springer; Complex Analysis And Operator Theory; 10; 6; 8-2016; 1383-1409 1661-8254 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11785-016-0546-3 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11785-016-0546-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613806493270016 |
score |
13.070432 |