Smooth paths of conditional expectations

Autores
Andruchow, Esteban; Larotonda, Gabriel Andrés
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let A be a von Neumann algebra with a finite trace , represented in H = L2(A, ), and let Bt ⊂ A be sub- algebras, for t in an interval I (0 ∈ I). Let Et : A → Bt be the unique -preserving conditional expectation. We say that the path t 7→ Et is smooth if for every a ∈ A and ∈ H, the map I ∋ t 7→ Et(a) ∈ H is continuously differentiable. This condition implies the existence of the derivative operator dEt(a) : H → H, dEt(a) = d dt Et(a). If this operator satifies the additional boundedness condition, ZJ kdEt(a)k2 2dt ≤ CJ kak2 2, for any closed bounded sub-interval J ⊂ I, and CJ > 0 a constant depending only on J, then the algebras Bt are ∗-isomorphic. More precisely, there exists a curve Gt : A → A, t ∈ I of unital, ∗-preserving linear isomorphisms which intertwine the expectations, Gt ◦ E0 = Et ◦ Gt. The curve Gt is weakly continuously differentiable. Moreover, the intertwining property in particular implies that Gt maps B0 onto Bt. We show that this restriction is a multiplicative isomorphism.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Materia
conditional expectations
finite von Neumann algebras
systems of projections
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20219

id CONICETDig_cafa7e381d821fb45f5024aa961b2aa2
oai_identifier_str oai:ri.conicet.gov.ar:11336/20219
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Smooth paths of conditional expectationsAndruchow, EstebanLarotonda, Gabriel Andrésconditional expectationsfinite von Neumann algebrassystems of projectionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let A be a von Neumann algebra with a finite trace , represented in H = L2(A, ), and let Bt ⊂ A be sub- algebras, for t in an interval I (0 ∈ I). Let Et : A → Bt be the unique -preserving conditional expectation. We say that the path t 7→ Et is smooth if for every a ∈ A and ∈ H, the map I ∋ t 7→ Et(a) ∈ H is continuously differentiable. This condition implies the existence of the derivative operator dEt(a) : H → H, dEt(a) = d dt Et(a). If this operator satifies the additional boundedness condition, ZJ kdEt(a)k2 2dt ≤ CJ kak2 2, for any closed bounded sub-interval J ⊂ I, and CJ > 0 a constant depending only on J, then the algebras Bt are ∗-isomorphic. More precisely, there exists a curve Gt : A → A, t ∈ I of unital, ∗-preserving linear isomorphisms which intertwine the expectations, Gt ◦ E0 = Et ◦ Gt. The curve Gt is weakly continuously differentiable. Moreover, the intertwining property in particular implies that Gt maps B0 onto Bt. We show that this restriction is a multiplicative isomorphism.Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaFil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaWorld Scientific2011-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20219Andruchow, Esteban; Larotonda, Gabriel Andrés; Smooth paths of conditional expectations; World Scientific; International Journal Of Mathematics; 22; 7; 9-2011; 1031-10500129-167XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0129167X11007124info:eu-repo/semantics/altIdentifier/doi/10.1142/S0129167X11007124info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:22Zoai:ri.conicet.gov.ar:11336/20219instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:23.098CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Smooth paths of conditional expectations
title Smooth paths of conditional expectations
spellingShingle Smooth paths of conditional expectations
Andruchow, Esteban
conditional expectations
finite von Neumann algebras
systems of projections
title_short Smooth paths of conditional expectations
title_full Smooth paths of conditional expectations
title_fullStr Smooth paths of conditional expectations
title_full_unstemmed Smooth paths of conditional expectations
title_sort Smooth paths of conditional expectations
dc.creator.none.fl_str_mv Andruchow, Esteban
Larotonda, Gabriel Andrés
author Andruchow, Esteban
author_facet Andruchow, Esteban
Larotonda, Gabriel Andrés
author_role author
author2 Larotonda, Gabriel Andrés
author2_role author
dc.subject.none.fl_str_mv conditional expectations
finite von Neumann algebras
systems of projections
topic conditional expectations
finite von Neumann algebras
systems of projections
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let A be a von Neumann algebra with a finite trace , represented in H = L2(A, ), and let Bt ⊂ A be sub- algebras, for t in an interval I (0 ∈ I). Let Et : A → Bt be the unique -preserving conditional expectation. We say that the path t 7→ Et is smooth if for every a ∈ A and ∈ H, the map I ∋ t 7→ Et(a) ∈ H is continuously differentiable. This condition implies the existence of the derivative operator dEt(a) : H → H, dEt(a) = d dt Et(a). If this operator satifies the additional boundedness condition, ZJ kdEt(a)k2 2dt ≤ CJ kak2 2, for any closed bounded sub-interval J ⊂ I, and CJ > 0 a constant depending only on J, then the algebras Bt are ∗-isomorphic. More precisely, there exists a curve Gt : A → A, t ∈ I of unital, ∗-preserving linear isomorphisms which intertwine the expectations, Gt ◦ E0 = Et ◦ Gt. The curve Gt is weakly continuously differentiable. Moreover, the intertwining property in particular implies that Gt maps B0 onto Bt. We show that this restriction is a multiplicative isomorphism.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
description Let A be a von Neumann algebra with a finite trace , represented in H = L2(A, ), and let Bt ⊂ A be sub- algebras, for t in an interval I (0 ∈ I). Let Et : A → Bt be the unique -preserving conditional expectation. We say that the path t 7→ Et is smooth if for every a ∈ A and ∈ H, the map I ∋ t 7→ Et(a) ∈ H is continuously differentiable. This condition implies the existence of the derivative operator dEt(a) : H → H, dEt(a) = d dt Et(a). If this operator satifies the additional boundedness condition, ZJ kdEt(a)k2 2dt ≤ CJ kak2 2, for any closed bounded sub-interval J ⊂ I, and CJ > 0 a constant depending only on J, then the algebras Bt are ∗-isomorphic. More precisely, there exists a curve Gt : A → A, t ∈ I of unital, ∗-preserving linear isomorphisms which intertwine the expectations, Gt ◦ E0 = Et ◦ Gt. The curve Gt is weakly continuously differentiable. Moreover, the intertwining property in particular implies that Gt maps B0 onto Bt. We show that this restriction is a multiplicative isomorphism.
publishDate 2011
dc.date.none.fl_str_mv 2011-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20219
Andruchow, Esteban; Larotonda, Gabriel Andrés; Smooth paths of conditional expectations; World Scientific; International Journal Of Mathematics; 22; 7; 9-2011; 1031-1050
0129-167X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20219
identifier_str_mv Andruchow, Esteban; Larotonda, Gabriel Andrés; Smooth paths of conditional expectations; World Scientific; International Journal Of Mathematics; 22; 7; 9-2011; 1031-1050
0129-167X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0129167X11007124
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0129167X11007124
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268662349692928
score 13.13397