Classes of Idempotents in Hilbert Space

Autores
Andruchow, Esteban
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
An idempotent operator E in a Hilbert space H(E2= 1) is written as a 2 × 2 matrix in terms of the orthogonal decomposition H=R(E)?R(E)?(R(E) is the range of E) as (Formula Presented). We study the sets of idempotents that one obtains when E1 , 2: R(E)?? R(E) is a special type of operator: compact, Fredholm and injective with dense range, among others.
Fuente
Complex Analysis And Operator Theory. 8-2016;10(6): 1383-1409
https://link.springer.com/journal/11785/volumes-and-issues/10-6
Materia
Idempotent Operators
Projections
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional UNGS
Institución
Universidad Nacional de General Sarmiento
OAI Identificador
oai:repositorio.ungs.edu.ar:UNGS/1812

id RIUNGS_d49afc812b94a7660fe59f1762f52371
oai_identifier_str oai:repositorio.ungs.edu.ar:UNGS/1812
network_acronym_str RIUNGS
repository_id_str
network_name_str Repositorio Institucional UNGS
spelling Classes of Idempotents in Hilbert SpaceAndruchow, EstebanIdempotent OperatorsProjectionsFil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.An idempotent operator E in a Hilbert space H(E2= 1) is written as a 2 × 2 matrix in terms of the orthogonal decomposition H=R(E)?R(E)?(R(E) is the range of E) as (Formula Presented). We study the sets of idempotents that one obtains when E1 , 2: R(E)?? R(E) is a special type of operator: compact, Fredholm and injective with dense range, among others.Springer2024-12-23T13:38:30Z2024-12-23T13:38:30Z2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfAndruchow, E. (2016). Classes of Idempotents in Hilbert Space. Complex Analysis And Operator Theory, 10(6), 1383-1409.1661-8254http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1812Complex Analysis And Operator Theory. 8-2016;10(6): 1383-1409https://link.springer.com/journal/11785/volumes-and-issues/10-6reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttp://dx.doi.org/10.1007/s11785-016-0546-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-29T15:01:49Zoai:repositorio.ungs.edu.ar:UNGS/1812instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-29 15:01:49.354Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse
dc.title.none.fl_str_mv Classes of Idempotents in Hilbert Space
title Classes of Idempotents in Hilbert Space
spellingShingle Classes of Idempotents in Hilbert Space
Andruchow, Esteban
Idempotent Operators
Projections
title_short Classes of Idempotents in Hilbert Space
title_full Classes of Idempotents in Hilbert Space
title_fullStr Classes of Idempotents in Hilbert Space
title_full_unstemmed Classes of Idempotents in Hilbert Space
title_sort Classes of Idempotents in Hilbert Space
dc.creator.none.fl_str_mv Andruchow, Esteban
author Andruchow, Esteban
author_facet Andruchow, Esteban
author_role author
dc.subject.none.fl_str_mv Idempotent Operators
Projections
topic Idempotent Operators
Projections
dc.description.none.fl_txt_mv Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
An idempotent operator E in a Hilbert space H(E2= 1) is written as a 2 × 2 matrix in terms of the orthogonal decomposition H=R(E)?R(E)?(R(E) is the range of E) as (Formula Presented). We study the sets of idempotents that one obtains when E1 , 2: R(E)?? R(E) is a special type of operator: compact, Fredholm and injective with dense range, among others.
description Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
publishDate 2016
dc.date.none.fl_str_mv 2016
2024-12-23T13:38:30Z
2024-12-23T13:38:30Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Andruchow, E. (2016). Classes of Idempotents in Hilbert Space. Complex Analysis And Operator Theory, 10(6), 1383-1409.
1661-8254
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1812
identifier_str_mv Andruchow, E. (2016). Classes of Idempotents in Hilbert Space. Complex Analysis And Operator Theory, 10(6), 1383-1409.
1661-8254
url http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1812
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://dx.doi.org/10.1007/s11785-016-0546-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Complex Analysis And Operator Theory. 8-2016;10(6): 1383-1409
https://link.springer.com/journal/11785/volumes-and-issues/10-6
reponame:Repositorio Institucional UNGS
instname:Universidad Nacional de General Sarmiento
reponame_str Repositorio Institucional UNGS
collection Repositorio Institucional UNGS
instname_str Universidad Nacional de General Sarmiento
repository.name.fl_str_mv Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento
repository.mail.fl_str_mv ubyd@campus.ungs.edu.ar
_version_ 1844623308062982144
score 12.559606