Split partial isometries

Autores
Andruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A partial isometry V is said to be a split partial isometry if H = R(V) + N(V), with R(V)∩ N(V ) = {0} (R(V) = range of V, N(V ) = null-space of V).We study the topological properties of the set I0 of such partial isometries. Denote by I the set of all partial isometries of B(H), and by IN the set of normal partial isometries. Then IN ⊂ I0 ⊂ I, and the inclusions are proper. It is known that I is a C∞-submanifold of B(H). It is shown here that I0 is open in I, therefore is has also C∞-local structure. We characterize the set I0, in terms of metric properties, existence of special pseudoinverses, and a property of the spectrum and the resolvent of V. The connected components of I0 are characterized: V0, V1 ∈ I0 lie in the same connected component if and only if dim R(V0) = dim R(V1) and dim R(V0)⊥ = dim R(V1)⊥.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina
Fil: Mbekhta, Mostafa. Université de Lille 1; Francia
Materia
Partial Isometries
Projections
Idempotents
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/3308

id CONICETDig_d222501f389909c2c48f8338833e08f3
oai_identifier_str oai:ri.conicet.gov.ar:11336/3308
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Split partial isometriesAndruchow, EstebanCorach, GustavoMbekhta, MostafaPartial IsometriesProjectionsIdempotentshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A partial isometry V is said to be a split partial isometry if H = R(V) + N(V), with R(V)∩ N(V ) = {0} (R(V) = range of V, N(V ) = null-space of V).We study the topological properties of the set I0 of such partial isometries. Denote by I the set of all partial isometries of B(H), and by IN the set of normal partial isometries. Then IN ⊂ I0 ⊂ I, and the inclusions are proper. It is known that I is a C∞-submanifold of B(H). It is shown here that I0 is open in I, therefore is has also C∞-local structure. We characterize the set I0, in terms of metric properties, existence of special pseudoinverses, and a property of the spectrum and the resolvent of V. The connected components of I0 are characterized: V0, V1 ∈ I0 lie in the same connected component if and only if dim R(V0) = dim R(V1) and dim R(V0)⊥ = dim R(V1)⊥.Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; ArgentinaFil: Mbekhta, Mostafa. Université de Lille 1; FranciaBirkhauser Verlag Ag2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3308Andruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa; Split partial isometries; Birkhauser Verlag Ag; Complex Analysis And Operator Theory; 7; 8-2013; 813-8291661-8254enginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1007/s11785-011-0176-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:15:33Zoai:ri.conicet.gov.ar:11336/3308instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:15:33.874CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Split partial isometries
title Split partial isometries
spellingShingle Split partial isometries
Andruchow, Esteban
Partial Isometries
Projections
Idempotents
title_short Split partial isometries
title_full Split partial isometries
title_fullStr Split partial isometries
title_full_unstemmed Split partial isometries
title_sort Split partial isometries
dc.creator.none.fl_str_mv Andruchow, Esteban
Corach, Gustavo
Mbekhta, Mostafa
author Andruchow, Esteban
author_facet Andruchow, Esteban
Corach, Gustavo
Mbekhta, Mostafa
author_role author
author2 Corach, Gustavo
Mbekhta, Mostafa
author2_role author
author
dc.subject.none.fl_str_mv Partial Isometries
Projections
Idempotents
topic Partial Isometries
Projections
Idempotents
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A partial isometry V is said to be a split partial isometry if H = R(V) + N(V), with R(V)∩ N(V ) = {0} (R(V) = range of V, N(V ) = null-space of V).We study the topological properties of the set I0 of such partial isometries. Denote by I the set of all partial isometries of B(H), and by IN the set of normal partial isometries. Then IN ⊂ I0 ⊂ I, and the inclusions are proper. It is known that I is a C∞-submanifold of B(H). It is shown here that I0 is open in I, therefore is has also C∞-local structure. We characterize the set I0, in terms of metric properties, existence of special pseudoinverses, and a property of the spectrum and the resolvent of V. The connected components of I0 are characterized: V0, V1 ∈ I0 lie in the same connected component if and only if dim R(V0) = dim R(V1) and dim R(V0)⊥ = dim R(V1)⊥.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina
Fil: Mbekhta, Mostafa. Université de Lille 1; Francia
description A partial isometry V is said to be a split partial isometry if H = R(V) + N(V), with R(V)∩ N(V ) = {0} (R(V) = range of V, N(V ) = null-space of V).We study the topological properties of the set I0 of such partial isometries. Denote by I the set of all partial isometries of B(H), and by IN the set of normal partial isometries. Then IN ⊂ I0 ⊂ I, and the inclusions are proper. It is known that I is a C∞-submanifold of B(H). It is shown here that I0 is open in I, therefore is has also C∞-local structure. We characterize the set I0, in terms of metric properties, existence of special pseudoinverses, and a property of the spectrum and the resolvent of V. The connected components of I0 are characterized: V0, V1 ∈ I0 lie in the same connected component if and only if dim R(V0) = dim R(V1) and dim R(V0)⊥ = dim R(V1)⊥.
publishDate 2013
dc.date.none.fl_str_mv 2013-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/3308
Andruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa; Split partial isometries; Birkhauser Verlag Ag; Complex Analysis And Operator Theory; 7; 8-2013; 813-829
1661-8254
url http://hdl.handle.net/11336/3308
identifier_str_mv Andruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa; Split partial isometries; Birkhauser Verlag Ag; Complex Analysis And Operator Theory; 7; 8-2013; 813-829
1661-8254
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11785-011-0176-8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Verlag Ag
publisher.none.fl_str_mv Birkhauser Verlag Ag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614092271124480
score 13.070432