Split partial isometries
- Autores
- Andruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A partial isometry V is said to be a split partial isometry if H = R(V) + N(V), with R(V)∩ N(V ) = {0} (R(V) = range of V, N(V ) = null-space of V).We study the topological properties of the set I0 of such partial isometries. Denote by I the set of all partial isometries of B(H), and by IN the set of normal partial isometries. Then IN ⊂ I0 ⊂ I, and the inclusions are proper. It is known that I is a C∞-submanifold of B(H). It is shown here that I0 is open in I, therefore is has also C∞-local structure. We characterize the set I0, in terms of metric properties, existence of special pseudoinverses, and a property of the spectrum and the resolvent of V. The connected components of I0 are characterized: V0, V1 ∈ I0 lie in the same connected component if and only if dim R(V0) = dim R(V1) and dim R(V0)⊥ = dim R(V1)⊥.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina
Fil: Mbekhta, Mostafa. Université de Lille 1; Francia - Materia
-
Partial Isometries
Projections
Idempotents - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3308
Ver los metadatos del registro completo
id |
CONICETDig_d222501f389909c2c48f8338833e08f3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3308 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Split partial isometriesAndruchow, EstebanCorach, GustavoMbekhta, MostafaPartial IsometriesProjectionsIdempotentshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A partial isometry V is said to be a split partial isometry if H = R(V) + N(V), with R(V)∩ N(V ) = {0} (R(V) = range of V, N(V ) = null-space of V).We study the topological properties of the set I0 of such partial isometries. Denote by I the set of all partial isometries of B(H), and by IN the set of normal partial isometries. Then IN ⊂ I0 ⊂ I, and the inclusions are proper. It is known that I is a C∞-submanifold of B(H). It is shown here that I0 is open in I, therefore is has also C∞-local structure. We characterize the set I0, in terms of metric properties, existence of special pseudoinverses, and a property of the spectrum and the resolvent of V. The connected components of I0 are characterized: V0, V1 ∈ I0 lie in the same connected component if and only if dim R(V0) = dim R(V1) and dim R(V0)⊥ = dim R(V1)⊥.Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; ArgentinaFil: Mbekhta, Mostafa. Université de Lille 1; FranciaBirkhauser Verlag Ag2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3308Andruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa; Split partial isometries; Birkhauser Verlag Ag; Complex Analysis And Operator Theory; 7; 8-2013; 813-8291661-8254enginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1007/s11785-011-0176-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:15:33Zoai:ri.conicet.gov.ar:11336/3308instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:15:33.874CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Split partial isometries |
title |
Split partial isometries |
spellingShingle |
Split partial isometries Andruchow, Esteban Partial Isometries Projections Idempotents |
title_short |
Split partial isometries |
title_full |
Split partial isometries |
title_fullStr |
Split partial isometries |
title_full_unstemmed |
Split partial isometries |
title_sort |
Split partial isometries |
dc.creator.none.fl_str_mv |
Andruchow, Esteban Corach, Gustavo Mbekhta, Mostafa |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban Corach, Gustavo Mbekhta, Mostafa |
author_role |
author |
author2 |
Corach, Gustavo Mbekhta, Mostafa |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Partial Isometries Projections Idempotents |
topic |
Partial Isometries Projections Idempotents |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A partial isometry V is said to be a split partial isometry if H = R(V) + N(V), with R(V)∩ N(V ) = {0} (R(V) = range of V, N(V ) = null-space of V).We study the topological properties of the set I0 of such partial isometries. Denote by I the set of all partial isometries of B(H), and by IN the set of normal partial isometries. Then IN ⊂ I0 ⊂ I, and the inclusions are proper. It is known that I is a C∞-submanifold of B(H). It is shown here that I0 is open in I, therefore is has also C∞-local structure. We characterize the set I0, in terms of metric properties, existence of special pseudoinverses, and a property of the spectrum and the resolvent of V. The connected components of I0 are characterized: V0, V1 ∈ I0 lie in the same connected component if and only if dim R(V0) = dim R(V1) and dim R(V0)⊥ = dim R(V1)⊥. Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina Fil: Mbekhta, Mostafa. Université de Lille 1; Francia |
description |
A partial isometry V is said to be a split partial isometry if H = R(V) + N(V), with R(V)∩ N(V ) = {0} (R(V) = range of V, N(V ) = null-space of V).We study the topological properties of the set I0 of such partial isometries. Denote by I the set of all partial isometries of B(H), and by IN the set of normal partial isometries. Then IN ⊂ I0 ⊂ I, and the inclusions are proper. It is known that I is a C∞-submanifold of B(H). It is shown here that I0 is open in I, therefore is has also C∞-local structure. We characterize the set I0, in terms of metric properties, existence of special pseudoinverses, and a property of the spectrum and the resolvent of V. The connected components of I0 are characterized: V0, V1 ∈ I0 lie in the same connected component if and only if dim R(V0) = dim R(V1) and dim R(V0)⊥ = dim R(V1)⊥. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3308 Andruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa; Split partial isometries; Birkhauser Verlag Ag; Complex Analysis And Operator Theory; 7; 8-2013; 813-829 1661-8254 |
url |
http://hdl.handle.net/11336/3308 |
identifier_str_mv |
Andruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa; Split partial isometries; Birkhauser Verlag Ag; Complex Analysis And Operator Theory; 7; 8-2013; 813-829 1661-8254 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.1007/s11785-011-0176-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614092271124480 |
score |
13.070432 |