A Statistical Inverse Method for Gridding Passive Microwave Data with Mixed Measurements
- Autores
- Grimson, Rafael; Bali, Juan Lucas; Rajngewerc, Mariela; Martin, Laura San; Salvia, Maria Mercedes
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- When a passive microwave footprint intersects objects on the ground with different spectral characteristics, the corresponding observation is mixed. The retrieval of geophysical parameters is limited by this mixture. We propose to partition the study region into objects following an object-based image analysis procedure and then to refine this partition into small cells. Then, we introduce a statistical method to estimate the brightness temperature (TB) of each cell. The method assumes that TB of the cells corresponding to the same object is identically distributed and that the TB heterogeneity within each cell can be neglected. The implementation is based on an iterative expectation-maximization algorithm. We evaluated the proposed method using synthetic images and applied it to grid the TBs of sample AMSR -2 real data over a coastal region in Argentina.
Fil: Grimson, Rafael. Universidad Nacional de San Martín; Argentina
Fil: Bali, Juan Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rajngewerc, Mariela. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina
Fil: Martin, Laura San. Universidad Nacional de San Martín; Argentina
Fil: Salvia, Maria Mercedes. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina - Materia
-
Expectation-Maximization (Em) Algorithms
Inverse Problems
Passive Microwave Remote Sensing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/80643
Ver los metadatos del registro completo
id |
CONICETDig_e19b116de33e645263b7ba4423795095 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/80643 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Statistical Inverse Method for Gridding Passive Microwave Data with Mixed MeasurementsGrimson, RafaelBali, Juan LucasRajngewerc, MarielaMartin, Laura SanSalvia, Maria MercedesExpectation-Maximization (Em) AlgorithmsInverse ProblemsPassive Microwave Remote Sensinghttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1When a passive microwave footprint intersects objects on the ground with different spectral characteristics, the corresponding observation is mixed. The retrieval of geophysical parameters is limited by this mixture. We propose to partition the study region into objects following an object-based image analysis procedure and then to refine this partition into small cells. Then, we introduce a statistical method to estimate the brightness temperature (TB) of each cell. The method assumes that TB of the cells corresponding to the same object is identically distributed and that the TB heterogeneity within each cell can be neglected. The implementation is based on an iterative expectation-maximization algorithm. We evaluated the proposed method using synthetic images and applied it to grid the TBs of sample AMSR -2 real data over a coastal region in Argentina.Fil: Grimson, Rafael. Universidad Nacional de San Martín; ArgentinaFil: Bali, Juan Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rajngewerc, Mariela. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; ArgentinaFil: Martin, Laura San. Universidad Nacional de San Martín; ArgentinaFil: Salvia, Maria Mercedes. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaInstitute of Electrical and Electronics Engineers2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80643Grimson, Rafael; Bali, Juan Lucas; Rajngewerc, Mariela; Martin, Laura San; Salvia, Maria Mercedes; A Statistical Inverse Method for Gridding Passive Microwave Data with Mixed Measurements; Institute of Electrical and Electronics Engineers; Ieee Transactions On Geoscience And Remote Sensing; 57; 3; 9-2018; 1347-13570196-2892CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8468198info:eu-repo/semantics/altIdentifier/doi/10.1109/TGRS.2018.2866196info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)https://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:45Zoai:ri.conicet.gov.ar:11336/80643instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:46.262CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Statistical Inverse Method for Gridding Passive Microwave Data with Mixed Measurements |
title |
A Statistical Inverse Method for Gridding Passive Microwave Data with Mixed Measurements |
spellingShingle |
A Statistical Inverse Method for Gridding Passive Microwave Data with Mixed Measurements Grimson, Rafael Expectation-Maximization (Em) Algorithms Inverse Problems Passive Microwave Remote Sensing |
title_short |
A Statistical Inverse Method for Gridding Passive Microwave Data with Mixed Measurements |
title_full |
A Statistical Inverse Method for Gridding Passive Microwave Data with Mixed Measurements |
title_fullStr |
A Statistical Inverse Method for Gridding Passive Microwave Data with Mixed Measurements |
title_full_unstemmed |
A Statistical Inverse Method for Gridding Passive Microwave Data with Mixed Measurements |
title_sort |
A Statistical Inverse Method for Gridding Passive Microwave Data with Mixed Measurements |
dc.creator.none.fl_str_mv |
Grimson, Rafael Bali, Juan Lucas Rajngewerc, Mariela Martin, Laura San Salvia, Maria Mercedes |
author |
Grimson, Rafael |
author_facet |
Grimson, Rafael Bali, Juan Lucas Rajngewerc, Mariela Martin, Laura San Salvia, Maria Mercedes |
author_role |
author |
author2 |
Bali, Juan Lucas Rajngewerc, Mariela Martin, Laura San Salvia, Maria Mercedes |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Expectation-Maximization (Em) Algorithms Inverse Problems Passive Microwave Remote Sensing |
topic |
Expectation-Maximization (Em) Algorithms Inverse Problems Passive Microwave Remote Sensing |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
When a passive microwave footprint intersects objects on the ground with different spectral characteristics, the corresponding observation is mixed. The retrieval of geophysical parameters is limited by this mixture. We propose to partition the study region into objects following an object-based image analysis procedure and then to refine this partition into small cells. Then, we introduce a statistical method to estimate the brightness temperature (TB) of each cell. The method assumes that TB of the cells corresponding to the same object is identically distributed and that the TB heterogeneity within each cell can be neglected. The implementation is based on an iterative expectation-maximization algorithm. We evaluated the proposed method using synthetic images and applied it to grid the TBs of sample AMSR -2 real data over a coastal region in Argentina. Fil: Grimson, Rafael. Universidad Nacional de San Martín; Argentina Fil: Bali, Juan Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rajngewerc, Mariela. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina Fil: Martin, Laura San. Universidad Nacional de San Martín; Argentina Fil: Salvia, Maria Mercedes. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina |
description |
When a passive microwave footprint intersects objects on the ground with different spectral characteristics, the corresponding observation is mixed. The retrieval of geophysical parameters is limited by this mixture. We propose to partition the study region into objects following an object-based image analysis procedure and then to refine this partition into small cells. Then, we introduce a statistical method to estimate the brightness temperature (TB) of each cell. The method assumes that TB of the cells corresponding to the same object is identically distributed and that the TB heterogeneity within each cell can be neglected. The implementation is based on an iterative expectation-maximization algorithm. We evaluated the proposed method using synthetic images and applied it to grid the TBs of sample AMSR -2 real data over a coastal region in Argentina. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/80643 Grimson, Rafael; Bali, Juan Lucas; Rajngewerc, Mariela; Martin, Laura San; Salvia, Maria Mercedes; A Statistical Inverse Method for Gridding Passive Microwave Data with Mixed Measurements; Institute of Electrical and Electronics Engineers; Ieee Transactions On Geoscience And Remote Sensing; 57; 3; 9-2018; 1347-1357 0196-2892 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/80643 |
identifier_str_mv |
Grimson, Rafael; Bali, Juan Lucas; Rajngewerc, Mariela; Martin, Laura San; Salvia, Maria Mercedes; A Statistical Inverse Method for Gridding Passive Microwave Data with Mixed Measurements; Institute of Electrical and Electronics Engineers; Ieee Transactions On Geoscience And Remote Sensing; 57; 3; 9-2018; 1347-1357 0196-2892 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8468198 info:eu-repo/semantics/altIdentifier/doi/10.1109/TGRS.2018.2866196 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR) https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR) https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268879799189504 |
score |
13.13397 |