Unsupervised classification for landslide detection from airborne laser scanning
- Autores
- Tran, Caitlin J.; Mora, Omar E.; Fayne, Jessica V.; Lenzano, María Gabriela
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Landslides are natural disasters that cause extensive environmental, infrastructure and socioeconomic damage worldwide. Since they are difficult to identify, it is imperative to evaluate innovative approaches to detect early-warning signs and assess their susceptibility, hazard and risk. The increasing availability of airborne laser-scanning data provides an opportunity for modern landslide mapping techniques to analyze topographic signature patterns of landslide, landslide-prone and landslide scarred areas over large swaths of terrain. In this study, a methodology based on several feature extractors and unsupervised classification, specifically k-means clustering and the Gaussian mixture model (GMM) were tested at the Carlyon Beach Peninsula in the state of Washington to map slide and non-slide terrain. When compared with the detailed, independently compiled landslide inventory map, the unsupervised methods correctly classify up to 87% of the terrain in the study area. These results suggest that (1) landslide scars associated with past deep-seated landslides may be identified using digital elevation models (DEMs) with unsupervised classification models; (2) feature extractors allow for individual analysis of specific topographic signatures; (3) unsupervised classification can be performed on each topographic signature using multiple number of clusters; (4) comparison of documented landslide prone regions to algorithm mapped regions show that algorithmic classification can accurately identify areas where deep-seated landslides have occurred. The conclusions of this study can be summarized by stating that unsupervised classification mapping methods and airborne light detection and ranging (LiDAR)-derived DEMs can offer important surface information that can be used as effective tools for digital terrain analysis to support landslide detection.
Fil: Tran, Caitlin J.. California State Polytechnic University; Estados Unidos
Fil: Mora, Omar E.. California State Polytechnic University; Estados Unidos
Fil: Fayne, Jessica V.. University of California at Los Angeles; Estados Unidos
Fil: Lenzano, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina - Materia
-
DEM
DETECTION
FEATURE EXTRACTION
GAUSSIAN MIXTURE MODEL (GMM)
K-MEANS CLUSTERING
LANDSLIDE
LIDAR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/120762
Ver los metadatos del registro completo
id |
CONICETDig_7e0a547d6520c7858b1e0313330d185c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/120762 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Unsupervised classification for landslide detection from airborne laser scanningTran, Caitlin J.Mora, Omar E.Fayne, Jessica V.Lenzano, María GabrielaDEMDETECTIONFEATURE EXTRACTIONGAUSSIAN MIXTURE MODEL (GMM)K-MEANS CLUSTERINGLANDSLIDELIDARhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Landslides are natural disasters that cause extensive environmental, infrastructure and socioeconomic damage worldwide. Since they are difficult to identify, it is imperative to evaluate innovative approaches to detect early-warning signs and assess their susceptibility, hazard and risk. The increasing availability of airborne laser-scanning data provides an opportunity for modern landslide mapping techniques to analyze topographic signature patterns of landslide, landslide-prone and landslide scarred areas over large swaths of terrain. In this study, a methodology based on several feature extractors and unsupervised classification, specifically k-means clustering and the Gaussian mixture model (GMM) were tested at the Carlyon Beach Peninsula in the state of Washington to map slide and non-slide terrain. When compared with the detailed, independently compiled landslide inventory map, the unsupervised methods correctly classify up to 87% of the terrain in the study area. These results suggest that (1) landslide scars associated with past deep-seated landslides may be identified using digital elevation models (DEMs) with unsupervised classification models; (2) feature extractors allow for individual analysis of specific topographic signatures; (3) unsupervised classification can be performed on each topographic signature using multiple number of clusters; (4) comparison of documented landslide prone regions to algorithm mapped regions show that algorithmic classification can accurately identify areas where deep-seated landslides have occurred. The conclusions of this study can be summarized by stating that unsupervised classification mapping methods and airborne light detection and ranging (LiDAR)-derived DEMs can offer important surface information that can be used as effective tools for digital terrain analysis to support landslide detection.Fil: Tran, Caitlin J.. California State Polytechnic University; Estados UnidosFil: Mora, Omar E.. California State Polytechnic University; Estados UnidosFil: Fayne, Jessica V.. University of California at Los Angeles; Estados UnidosFil: Lenzano, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaMDPI2019-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/120762Tran, Caitlin J.; Mora, Omar E.; Fayne, Jessica V.; Lenzano, María Gabriela; Unsupervised classification for landslide detection from airborne laser scanning; MDPI; Geosciences; 9; 5; 5-2019; 1-142076-3263CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3263/9/5/221info:eu-repo/semantics/altIdentifier/doi/10.3390/geosciences9050221info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:50Zoai:ri.conicet.gov.ar:11336/120762instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:50.724CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Unsupervised classification for landslide detection from airborne laser scanning |
title |
Unsupervised classification for landslide detection from airborne laser scanning |
spellingShingle |
Unsupervised classification for landslide detection from airborne laser scanning Tran, Caitlin J. DEM DETECTION FEATURE EXTRACTION GAUSSIAN MIXTURE MODEL (GMM) K-MEANS CLUSTERING LANDSLIDE LIDAR |
title_short |
Unsupervised classification for landslide detection from airborne laser scanning |
title_full |
Unsupervised classification for landslide detection from airborne laser scanning |
title_fullStr |
Unsupervised classification for landslide detection from airborne laser scanning |
title_full_unstemmed |
Unsupervised classification for landslide detection from airborne laser scanning |
title_sort |
Unsupervised classification for landslide detection from airborne laser scanning |
dc.creator.none.fl_str_mv |
Tran, Caitlin J. Mora, Omar E. Fayne, Jessica V. Lenzano, María Gabriela |
author |
Tran, Caitlin J. |
author_facet |
Tran, Caitlin J. Mora, Omar E. Fayne, Jessica V. Lenzano, María Gabriela |
author_role |
author |
author2 |
Mora, Omar E. Fayne, Jessica V. Lenzano, María Gabriela |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DEM DETECTION FEATURE EXTRACTION GAUSSIAN MIXTURE MODEL (GMM) K-MEANS CLUSTERING LANDSLIDE LIDAR |
topic |
DEM DETECTION FEATURE EXTRACTION GAUSSIAN MIXTURE MODEL (GMM) K-MEANS CLUSTERING LANDSLIDE LIDAR |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Landslides are natural disasters that cause extensive environmental, infrastructure and socioeconomic damage worldwide. Since they are difficult to identify, it is imperative to evaluate innovative approaches to detect early-warning signs and assess their susceptibility, hazard and risk. The increasing availability of airborne laser-scanning data provides an opportunity for modern landslide mapping techniques to analyze topographic signature patterns of landslide, landslide-prone and landslide scarred areas over large swaths of terrain. In this study, a methodology based on several feature extractors and unsupervised classification, specifically k-means clustering and the Gaussian mixture model (GMM) were tested at the Carlyon Beach Peninsula in the state of Washington to map slide and non-slide terrain. When compared with the detailed, independently compiled landslide inventory map, the unsupervised methods correctly classify up to 87% of the terrain in the study area. These results suggest that (1) landslide scars associated with past deep-seated landslides may be identified using digital elevation models (DEMs) with unsupervised classification models; (2) feature extractors allow for individual analysis of specific topographic signatures; (3) unsupervised classification can be performed on each topographic signature using multiple number of clusters; (4) comparison of documented landslide prone regions to algorithm mapped regions show that algorithmic classification can accurately identify areas where deep-seated landslides have occurred. The conclusions of this study can be summarized by stating that unsupervised classification mapping methods and airborne light detection and ranging (LiDAR)-derived DEMs can offer important surface information that can be used as effective tools for digital terrain analysis to support landslide detection. Fil: Tran, Caitlin J.. California State Polytechnic University; Estados Unidos Fil: Mora, Omar E.. California State Polytechnic University; Estados Unidos Fil: Fayne, Jessica V.. University of California at Los Angeles; Estados Unidos Fil: Lenzano, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina |
description |
Landslides are natural disasters that cause extensive environmental, infrastructure and socioeconomic damage worldwide. Since they are difficult to identify, it is imperative to evaluate innovative approaches to detect early-warning signs and assess their susceptibility, hazard and risk. The increasing availability of airborne laser-scanning data provides an opportunity for modern landslide mapping techniques to analyze topographic signature patterns of landslide, landslide-prone and landslide scarred areas over large swaths of terrain. In this study, a methodology based on several feature extractors and unsupervised classification, specifically k-means clustering and the Gaussian mixture model (GMM) were tested at the Carlyon Beach Peninsula in the state of Washington to map slide and non-slide terrain. When compared with the detailed, independently compiled landslide inventory map, the unsupervised methods correctly classify up to 87% of the terrain in the study area. These results suggest that (1) landslide scars associated with past deep-seated landslides may be identified using digital elevation models (DEMs) with unsupervised classification models; (2) feature extractors allow for individual analysis of specific topographic signatures; (3) unsupervised classification can be performed on each topographic signature using multiple number of clusters; (4) comparison of documented landslide prone regions to algorithm mapped regions show that algorithmic classification can accurately identify areas where deep-seated landslides have occurred. The conclusions of this study can be summarized by stating that unsupervised classification mapping methods and airborne light detection and ranging (LiDAR)-derived DEMs can offer important surface information that can be used as effective tools for digital terrain analysis to support landslide detection. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/120762 Tran, Caitlin J.; Mora, Omar E.; Fayne, Jessica V.; Lenzano, María Gabriela; Unsupervised classification for landslide detection from airborne laser scanning; MDPI; Geosciences; 9; 5; 5-2019; 1-14 2076-3263 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/120762 |
identifier_str_mv |
Tran, Caitlin J.; Mora, Omar E.; Fayne, Jessica V.; Lenzano, María Gabriela; Unsupervised classification for landslide detection from airborne laser scanning; MDPI; Geosciences; 9; 5; 5-2019; 1-14 2076-3263 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3263/9/5/221 info:eu-repo/semantics/altIdentifier/doi/10.3390/geosciences9050221 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613461860941824 |
score |
13.070432 |