Unsupervised classification for landslide detection from airborne laser scanning

Autores
Tran, Caitlin J.; Mora, Omar E.; Fayne, Jessica V.; Lenzano, María Gabriela
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Landslides are natural disasters that cause extensive environmental, infrastructure and socioeconomic damage worldwide. Since they are difficult to identify, it is imperative to evaluate innovative approaches to detect early-warning signs and assess their susceptibility, hazard and risk. The increasing availability of airborne laser-scanning data provides an opportunity for modern landslide mapping techniques to analyze topographic signature patterns of landslide, landslide-prone and landslide scarred areas over large swaths of terrain. In this study, a methodology based on several feature extractors and unsupervised classification, specifically k-means clustering and the Gaussian mixture model (GMM) were tested at the Carlyon Beach Peninsula in the state of Washington to map slide and non-slide terrain. When compared with the detailed, independently compiled landslide inventory map, the unsupervised methods correctly classify up to 87% of the terrain in the study area. These results suggest that (1) landslide scars associated with past deep-seated landslides may be identified using digital elevation models (DEMs) with unsupervised classification models; (2) feature extractors allow for individual analysis of specific topographic signatures; (3) unsupervised classification can be performed on each topographic signature using multiple number of clusters; (4) comparison of documented landslide prone regions to algorithm mapped regions show that algorithmic classification can accurately identify areas where deep-seated landslides have occurred. The conclusions of this study can be summarized by stating that unsupervised classification mapping methods and airborne light detection and ranging (LiDAR)-derived DEMs can offer important surface information that can be used as effective tools for digital terrain analysis to support landslide detection.
Fil: Tran, Caitlin J.. California State Polytechnic University; Estados Unidos
Fil: Mora, Omar E.. California State Polytechnic University; Estados Unidos
Fil: Fayne, Jessica V.. University of California at Los Angeles; Estados Unidos
Fil: Lenzano, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
Materia
DEM
DETECTION
FEATURE EXTRACTION
GAUSSIAN MIXTURE MODEL (GMM)
K-MEANS CLUSTERING
LANDSLIDE
LIDAR
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/120762

id CONICETDig_7e0a547d6520c7858b1e0313330d185c
oai_identifier_str oai:ri.conicet.gov.ar:11336/120762
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Unsupervised classification for landslide detection from airborne laser scanningTran, Caitlin J.Mora, Omar E.Fayne, Jessica V.Lenzano, María GabrielaDEMDETECTIONFEATURE EXTRACTIONGAUSSIAN MIXTURE MODEL (GMM)K-MEANS CLUSTERINGLANDSLIDELIDARhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Landslides are natural disasters that cause extensive environmental, infrastructure and socioeconomic damage worldwide. Since they are difficult to identify, it is imperative to evaluate innovative approaches to detect early-warning signs and assess their susceptibility, hazard and risk. The increasing availability of airborne laser-scanning data provides an opportunity for modern landslide mapping techniques to analyze topographic signature patterns of landslide, landslide-prone and landslide scarred areas over large swaths of terrain. In this study, a methodology based on several feature extractors and unsupervised classification, specifically k-means clustering and the Gaussian mixture model (GMM) were tested at the Carlyon Beach Peninsula in the state of Washington to map slide and non-slide terrain. When compared with the detailed, independently compiled landslide inventory map, the unsupervised methods correctly classify up to 87% of the terrain in the study area. These results suggest that (1) landslide scars associated with past deep-seated landslides may be identified using digital elevation models (DEMs) with unsupervised classification models; (2) feature extractors allow for individual analysis of specific topographic signatures; (3) unsupervised classification can be performed on each topographic signature using multiple number of clusters; (4) comparison of documented landslide prone regions to algorithm mapped regions show that algorithmic classification can accurately identify areas where deep-seated landslides have occurred. The conclusions of this study can be summarized by stating that unsupervised classification mapping methods and airborne light detection and ranging (LiDAR)-derived DEMs can offer important surface information that can be used as effective tools for digital terrain analysis to support landslide detection.Fil: Tran, Caitlin J.. California State Polytechnic University; Estados UnidosFil: Mora, Omar E.. California State Polytechnic University; Estados UnidosFil: Fayne, Jessica V.. University of California at Los Angeles; Estados UnidosFil: Lenzano, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaMDPI2019-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/120762Tran, Caitlin J.; Mora, Omar E.; Fayne, Jessica V.; Lenzano, María Gabriela; Unsupervised classification for landslide detection from airborne laser scanning; MDPI; Geosciences; 9; 5; 5-2019; 1-142076-3263CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3263/9/5/221info:eu-repo/semantics/altIdentifier/doi/10.3390/geosciences9050221info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:50Zoai:ri.conicet.gov.ar:11336/120762instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:50.724CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Unsupervised classification for landslide detection from airborne laser scanning
title Unsupervised classification for landslide detection from airborne laser scanning
spellingShingle Unsupervised classification for landslide detection from airborne laser scanning
Tran, Caitlin J.
DEM
DETECTION
FEATURE EXTRACTION
GAUSSIAN MIXTURE MODEL (GMM)
K-MEANS CLUSTERING
LANDSLIDE
LIDAR
title_short Unsupervised classification for landslide detection from airborne laser scanning
title_full Unsupervised classification for landslide detection from airborne laser scanning
title_fullStr Unsupervised classification for landslide detection from airborne laser scanning
title_full_unstemmed Unsupervised classification for landslide detection from airborne laser scanning
title_sort Unsupervised classification for landslide detection from airborne laser scanning
dc.creator.none.fl_str_mv Tran, Caitlin J.
Mora, Omar E.
Fayne, Jessica V.
Lenzano, María Gabriela
author Tran, Caitlin J.
author_facet Tran, Caitlin J.
Mora, Omar E.
Fayne, Jessica V.
Lenzano, María Gabriela
author_role author
author2 Mora, Omar E.
Fayne, Jessica V.
Lenzano, María Gabriela
author2_role author
author
author
dc.subject.none.fl_str_mv DEM
DETECTION
FEATURE EXTRACTION
GAUSSIAN MIXTURE MODEL (GMM)
K-MEANS CLUSTERING
LANDSLIDE
LIDAR
topic DEM
DETECTION
FEATURE EXTRACTION
GAUSSIAN MIXTURE MODEL (GMM)
K-MEANS CLUSTERING
LANDSLIDE
LIDAR
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Landslides are natural disasters that cause extensive environmental, infrastructure and socioeconomic damage worldwide. Since they are difficult to identify, it is imperative to evaluate innovative approaches to detect early-warning signs and assess their susceptibility, hazard and risk. The increasing availability of airborne laser-scanning data provides an opportunity for modern landslide mapping techniques to analyze topographic signature patterns of landslide, landslide-prone and landslide scarred areas over large swaths of terrain. In this study, a methodology based on several feature extractors and unsupervised classification, specifically k-means clustering and the Gaussian mixture model (GMM) were tested at the Carlyon Beach Peninsula in the state of Washington to map slide and non-slide terrain. When compared with the detailed, independently compiled landslide inventory map, the unsupervised methods correctly classify up to 87% of the terrain in the study area. These results suggest that (1) landslide scars associated with past deep-seated landslides may be identified using digital elevation models (DEMs) with unsupervised classification models; (2) feature extractors allow for individual analysis of specific topographic signatures; (3) unsupervised classification can be performed on each topographic signature using multiple number of clusters; (4) comparison of documented landslide prone regions to algorithm mapped regions show that algorithmic classification can accurately identify areas where deep-seated landslides have occurred. The conclusions of this study can be summarized by stating that unsupervised classification mapping methods and airborne light detection and ranging (LiDAR)-derived DEMs can offer important surface information that can be used as effective tools for digital terrain analysis to support landslide detection.
Fil: Tran, Caitlin J.. California State Polytechnic University; Estados Unidos
Fil: Mora, Omar E.. California State Polytechnic University; Estados Unidos
Fil: Fayne, Jessica V.. University of California at Los Angeles; Estados Unidos
Fil: Lenzano, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
description Landslides are natural disasters that cause extensive environmental, infrastructure and socioeconomic damage worldwide. Since they are difficult to identify, it is imperative to evaluate innovative approaches to detect early-warning signs and assess their susceptibility, hazard and risk. The increasing availability of airborne laser-scanning data provides an opportunity for modern landslide mapping techniques to analyze topographic signature patterns of landslide, landslide-prone and landslide scarred areas over large swaths of terrain. In this study, a methodology based on several feature extractors and unsupervised classification, specifically k-means clustering and the Gaussian mixture model (GMM) were tested at the Carlyon Beach Peninsula in the state of Washington to map slide and non-slide terrain. When compared with the detailed, independently compiled landslide inventory map, the unsupervised methods correctly classify up to 87% of the terrain in the study area. These results suggest that (1) landslide scars associated with past deep-seated landslides may be identified using digital elevation models (DEMs) with unsupervised classification models; (2) feature extractors allow for individual analysis of specific topographic signatures; (3) unsupervised classification can be performed on each topographic signature using multiple number of clusters; (4) comparison of documented landslide prone regions to algorithm mapped regions show that algorithmic classification can accurately identify areas where deep-seated landslides have occurred. The conclusions of this study can be summarized by stating that unsupervised classification mapping methods and airborne light detection and ranging (LiDAR)-derived DEMs can offer important surface information that can be used as effective tools for digital terrain analysis to support landslide detection.
publishDate 2019
dc.date.none.fl_str_mv 2019-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/120762
Tran, Caitlin J.; Mora, Omar E.; Fayne, Jessica V.; Lenzano, María Gabriela; Unsupervised classification for landslide detection from airborne laser scanning; MDPI; Geosciences; 9; 5; 5-2019; 1-14
2076-3263
CONICET Digital
CONICET
url http://hdl.handle.net/11336/120762
identifier_str_mv Tran, Caitlin J.; Mora, Omar E.; Fayne, Jessica V.; Lenzano, María Gabriela; Unsupervised classification for landslide detection from airborne laser scanning; MDPI; Geosciences; 9; 5; 5-2019; 1-14
2076-3263
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3263/9/5/221
info:eu-repo/semantics/altIdentifier/doi/10.3390/geosciences9050221
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613461860941824
score 13.070432