Non-commutative Schur-Horn theorems and extended majorization for Hermitian matrices
- Autores
- Massey, Pedro Gustavo
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let A ⊆ Mn(C) be a unital ∗-subalgebra of the algebra Mn(C) of all n×n complex matrices and let B be an hermitian matrix. Let Un(B) denote the unitary orbit of B in Mn(C) and let EA denote the trace preserving conditional expectation onto A. We give a spectral characterization of the set EA(Un(B)) = {EA(U ∗B U) : U ∈ Mn(C), unitary matrix}. We obtain a similar result for the contractive orbit of a positive semi-definite matrix B. We then use these results to extend the notions of majorization and submajorization between self-adjoint matrices to spectral relations that come together with extended (non-commutative) Schur-Horn type theorems.
Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina - Materia
-
Extended majorization
non-commutative Schur-Horn theorems
diagonal block compressions
partial traces
unitary orbit - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19430
Ver los metadatos del registro completo
id |
CONICETDig_0d79c85e67431d26e82b868faa5adeb3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19430 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Non-commutative Schur-Horn theorems and extended majorization for Hermitian matricesMassey, Pedro GustavoExtended majorizationnon-commutative Schur-Horn theoremsdiagonal block compressionspartial tracesunitary orbithttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let A ⊆ Mn(C) be a unital ∗-subalgebra of the algebra Mn(C) of all n×n complex matrices and let B be an hermitian matrix. Let Un(B) denote the unitary orbit of B in Mn(C) and let EA denote the trace preserving conditional expectation onto A. We give a spectral characterization of the set EA(Un(B)) = {EA(U ∗B U) : U ∈ Mn(C), unitary matrix}. We obtain a similar result for the contractive orbit of a positive semi-definite matrix B. We then use these results to extend the notions of majorization and submajorization between self-adjoint matrices to spectral relations that come together with extended (non-commutative) Schur-Horn type theorems.Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaTaylor & Francis Ltd2010-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19430Massey, Pedro Gustavo; Non-commutative Schur-Horn theorems and extended majorization for Hermitian matrices; Taylor & Francis Ltd; Linear And Multilinear Algebra; 58; 4; 6-2010; 465-4800308-1087CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0712.2246info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/03081080802677615info:eu-repo/semantics/altIdentifier/doi/10.1080/03081080802677615info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:22:54Zoai:ri.conicet.gov.ar:11336/19430instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:22:54.626CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Non-commutative Schur-Horn theorems and extended majorization for Hermitian matrices |
title |
Non-commutative Schur-Horn theorems and extended majorization for Hermitian matrices |
spellingShingle |
Non-commutative Schur-Horn theorems and extended majorization for Hermitian matrices Massey, Pedro Gustavo Extended majorization non-commutative Schur-Horn theorems diagonal block compressions partial traces unitary orbit |
title_short |
Non-commutative Schur-Horn theorems and extended majorization for Hermitian matrices |
title_full |
Non-commutative Schur-Horn theorems and extended majorization for Hermitian matrices |
title_fullStr |
Non-commutative Schur-Horn theorems and extended majorization for Hermitian matrices |
title_full_unstemmed |
Non-commutative Schur-Horn theorems and extended majorization for Hermitian matrices |
title_sort |
Non-commutative Schur-Horn theorems and extended majorization for Hermitian matrices |
dc.creator.none.fl_str_mv |
Massey, Pedro Gustavo |
author |
Massey, Pedro Gustavo |
author_facet |
Massey, Pedro Gustavo |
author_role |
author |
dc.subject.none.fl_str_mv |
Extended majorization non-commutative Schur-Horn theorems diagonal block compressions partial traces unitary orbit |
topic |
Extended majorization non-commutative Schur-Horn theorems diagonal block compressions partial traces unitary orbit |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let A ⊆ Mn(C) be a unital ∗-subalgebra of the algebra Mn(C) of all n×n complex matrices and let B be an hermitian matrix. Let Un(B) denote the unitary orbit of B in Mn(C) and let EA denote the trace preserving conditional expectation onto A. We give a spectral characterization of the set EA(Un(B)) = {EA(U ∗B U) : U ∈ Mn(C), unitary matrix}. We obtain a similar result for the contractive orbit of a positive semi-definite matrix B. We then use these results to extend the notions of majorization and submajorization between self-adjoint matrices to spectral relations that come together with extended (non-commutative) Schur-Horn type theorems. Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina |
description |
Let A ⊆ Mn(C) be a unital ∗-subalgebra of the algebra Mn(C) of all n×n complex matrices and let B be an hermitian matrix. Let Un(B) denote the unitary orbit of B in Mn(C) and let EA denote the trace preserving conditional expectation onto A. We give a spectral characterization of the set EA(Un(B)) = {EA(U ∗B U) : U ∈ Mn(C), unitary matrix}. We obtain a similar result for the contractive orbit of a positive semi-definite matrix B. We then use these results to extend the notions of majorization and submajorization between self-adjoint matrices to spectral relations that come together with extended (non-commutative) Schur-Horn type theorems. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19430 Massey, Pedro Gustavo; Non-commutative Schur-Horn theorems and extended majorization for Hermitian matrices; Taylor & Francis Ltd; Linear And Multilinear Algebra; 58; 4; 6-2010; 465-480 0308-1087 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19430 |
identifier_str_mv |
Massey, Pedro Gustavo; Non-commutative Schur-Horn theorems and extended majorization for Hermitian matrices; Taylor & Francis Ltd; Linear And Multilinear Algebra; 58; 4; 6-2010; 465-480 0308-1087 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0712.2246 info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/03081080802677615 info:eu-repo/semantics/altIdentifier/doi/10.1080/03081080802677615 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
publisher.none.fl_str_mv |
Taylor & Francis Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614221750337536 |
score |
13.070432 |