A contractive version of a Schur–Horn theorem in II1 factors
- Autores
- Argerami, Martin; Massey, Pedro Gustavo
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove a contractive version of the Schur–Horn theorem for submajorization in II1 factors that complements some previous results on the Schur–Horn theorem within this context. We obtain a reformulation of a conjecture of Arveson and Kadison regarding a strong version of the Schur–Horn theorem in II1 factors in terms of submajorization and contractive orbits of positive operators.
Fil: Argerami, Martin. University of Regina; Canadá
Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina - Materia
-
Majorization
Submajorization
Contractive Orbits
Schur–Horn Theorem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19461
Ver los metadatos del registro completo
id |
CONICETDig_3a6199477dc047cf921e6b247adf757a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19461 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A contractive version of a Schur–Horn theorem in II1 factorsArgerami, MartinMassey, Pedro GustavoMajorizationSubmajorizationContractive OrbitsSchur–Horn Theoremhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove a contractive version of the Schur–Horn theorem for submajorization in II1 factors that complements some previous results on the Schur–Horn theorem within this context. We obtain a reformulation of a conjecture of Arveson and Kadison regarding a strong version of the Schur–Horn theorem in II1 factors in terms of submajorization and contractive orbits of positive operators.Fil: Argerami, Martin. University of Regina; CanadáFil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaElsevier2008-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19461Argerami, Martin; Massey, Pedro Gustavo; A contractive version of a Schur–Horn theorem in II1 factors; Elsevier; Journal Of Mathematical Analysis And Applications; 337; 1; 1-2008; 231-2380022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X07004052info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2007.03.095info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:02:34Zoai:ri.conicet.gov.ar:11336/19461instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:02:34.303CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A contractive version of a Schur–Horn theorem in II1 factors |
title |
A contractive version of a Schur–Horn theorem in II1 factors |
spellingShingle |
A contractive version of a Schur–Horn theorem in II1 factors Argerami, Martin Majorization Submajorization Contractive Orbits Schur–Horn Theorem |
title_short |
A contractive version of a Schur–Horn theorem in II1 factors |
title_full |
A contractive version of a Schur–Horn theorem in II1 factors |
title_fullStr |
A contractive version of a Schur–Horn theorem in II1 factors |
title_full_unstemmed |
A contractive version of a Schur–Horn theorem in II1 factors |
title_sort |
A contractive version of a Schur–Horn theorem in II1 factors |
dc.creator.none.fl_str_mv |
Argerami, Martin Massey, Pedro Gustavo |
author |
Argerami, Martin |
author_facet |
Argerami, Martin Massey, Pedro Gustavo |
author_role |
author |
author2 |
Massey, Pedro Gustavo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Majorization Submajorization Contractive Orbits Schur–Horn Theorem |
topic |
Majorization Submajorization Contractive Orbits Schur–Horn Theorem |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove a contractive version of the Schur–Horn theorem for submajorization in II1 factors that complements some previous results on the Schur–Horn theorem within this context. We obtain a reformulation of a conjecture of Arveson and Kadison regarding a strong version of the Schur–Horn theorem in II1 factors in terms of submajorization and contractive orbits of positive operators. Fil: Argerami, Martin. University of Regina; Canadá Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina |
description |
We prove a contractive version of the Schur–Horn theorem for submajorization in II1 factors that complements some previous results on the Schur–Horn theorem within this context. We obtain a reformulation of a conjecture of Arveson and Kadison regarding a strong version of the Schur–Horn theorem in II1 factors in terms of submajorization and contractive orbits of positive operators. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19461 Argerami, Martin; Massey, Pedro Gustavo; A contractive version of a Schur–Horn theorem in II1 factors; Elsevier; Journal Of Mathematical Analysis And Applications; 337; 1; 1-2008; 231-238 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19461 |
identifier_str_mv |
Argerami, Martin; Massey, Pedro Gustavo; A contractive version of a Schur–Horn theorem in II1 factors; Elsevier; Journal Of Mathematical Analysis And Applications; 337; 1; 1-2008; 231-238 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X07004052 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2007.03.095 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980025089916928 |
score |
12.993085 |