Multivariable Schur-Horn theorems
- Autores
- Massey, Pedro Gustavo; Ravichandran, Mohan
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove a variety of results describing the diagonals of tuples of commuting hermitian operators in type II 1 1 factors. These results, motivated by work of Arveson and Kadison, are generalizations of the classical Schur-Horn theorem to the infinite-dimensional, multivariable setting. Our description of these possible diagonals uses a natural generalization of the classical notion of majorization. In the special case when both the given tuple and the desired diagonal have finite joint spectrum, our results are complete. When the tuples do not have finite joint spectrum, we are able to prove strong approximate results. Unlike the single variable case, the multivariable case presents several surprises and we point out obstructions to extending our complete description in the finite spectrum case to the general case. We also discuss the problem of characterizing diagonals of commuting tuples in B ( H ) B(H) and give approximate characterizations in this case as well.
Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Ravichandran, Mohan. Mimar Sinan Fine Arts University; Turquía - Materia
-
Joint Majorization
Schur-Horn Theorem
Ii_1 Factors - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18992
Ver los metadatos del registro completo
id |
CONICETDig_b0a00b45be09ffc116ab3c2922e686c9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18992 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multivariable Schur-Horn theoremsMassey, Pedro GustavoRavichandran, MohanJoint MajorizationSchur-Horn TheoremIi_1 Factorshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove a variety of results describing the diagonals of tuples of commuting hermitian operators in type II 1 1 factors. These results, motivated by work of Arveson and Kadison, are generalizations of the classical Schur-Horn theorem to the infinite-dimensional, multivariable setting. Our description of these possible diagonals uses a natural generalization of the classical notion of majorization. In the special case when both the given tuple and the desired diagonal have finite joint spectrum, our results are complete. When the tuples do not have finite joint spectrum, we are able to prove strong approximate results. Unlike the single variable case, the multivariable case presents several surprises and we point out obstructions to extending our complete description in the finite spectrum case to the general case. We also discuss the problem of characterizing diagonals of commuting tuples in B ( H ) B(H) and give approximate characterizations in this case as well.Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaFil: Ravichandran, Mohan. Mimar Sinan Fine Arts University; TurquíaLondon Mathematical Society2016-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18992Massey, Pedro Gustavo; Ravichandran, Mohan; Multivariable Schur-Horn theorems; London Mathematical Society; Proceedings Of The London Mathematical Society; 112; 1; 2-2016; 206-2340024-6115CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/plms/pdv067/fullinfo:eu-repo/semantics/altIdentifier/doi/10.1112/plms/pdv067info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:08:42Zoai:ri.conicet.gov.ar:11336/18992instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:08:43.005CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multivariable Schur-Horn theorems |
title |
Multivariable Schur-Horn theorems |
spellingShingle |
Multivariable Schur-Horn theorems Massey, Pedro Gustavo Joint Majorization Schur-Horn Theorem Ii_1 Factors |
title_short |
Multivariable Schur-Horn theorems |
title_full |
Multivariable Schur-Horn theorems |
title_fullStr |
Multivariable Schur-Horn theorems |
title_full_unstemmed |
Multivariable Schur-Horn theorems |
title_sort |
Multivariable Schur-Horn theorems |
dc.creator.none.fl_str_mv |
Massey, Pedro Gustavo Ravichandran, Mohan |
author |
Massey, Pedro Gustavo |
author_facet |
Massey, Pedro Gustavo Ravichandran, Mohan |
author_role |
author |
author2 |
Ravichandran, Mohan |
author2_role |
author |
dc.subject.none.fl_str_mv |
Joint Majorization Schur-Horn Theorem Ii_1 Factors |
topic |
Joint Majorization Schur-Horn Theorem Ii_1 Factors |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove a variety of results describing the diagonals of tuples of commuting hermitian operators in type II 1 1 factors. These results, motivated by work of Arveson and Kadison, are generalizations of the classical Schur-Horn theorem to the infinite-dimensional, multivariable setting. Our description of these possible diagonals uses a natural generalization of the classical notion of majorization. In the special case when both the given tuple and the desired diagonal have finite joint spectrum, our results are complete. When the tuples do not have finite joint spectrum, we are able to prove strong approximate results. Unlike the single variable case, the multivariable case presents several surprises and we point out obstructions to extending our complete description in the finite spectrum case to the general case. We also discuss the problem of characterizing diagonals of commuting tuples in B ( H ) B(H) and give approximate characterizations in this case as well. Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina Fil: Ravichandran, Mohan. Mimar Sinan Fine Arts University; Turquía |
description |
We prove a variety of results describing the diagonals of tuples of commuting hermitian operators in type II 1 1 factors. These results, motivated by work of Arveson and Kadison, are generalizations of the classical Schur-Horn theorem to the infinite-dimensional, multivariable setting. Our description of these possible diagonals uses a natural generalization of the classical notion of majorization. In the special case when both the given tuple and the desired diagonal have finite joint spectrum, our results are complete. When the tuples do not have finite joint spectrum, we are able to prove strong approximate results. Unlike the single variable case, the multivariable case presents several surprises and we point out obstructions to extending our complete description in the finite spectrum case to the general case. We also discuss the problem of characterizing diagonals of commuting tuples in B ( H ) B(H) and give approximate characterizations in this case as well. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18992 Massey, Pedro Gustavo; Ravichandran, Mohan; Multivariable Schur-Horn theorems; London Mathematical Society; Proceedings Of The London Mathematical Society; 112; 1; 2-2016; 206-234 0024-6115 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18992 |
identifier_str_mv |
Massey, Pedro Gustavo; Ravichandran, Mohan; Multivariable Schur-Horn theorems; London Mathematical Society; Proceedings Of The London Mathematical Society; 112; 1; 2-2016; 206-234 0024-6115 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/plms/pdv067/full info:eu-repo/semantics/altIdentifier/doi/10.1112/plms/pdv067 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
London Mathematical Society |
publisher.none.fl_str_mv |
London Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980417431404544 |
score |
12.993085 |