The Schur-Horn theorem for operators and frames with prescribed norms and frame operator
- Autores
- Antezana, Jorge Abel; Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let H be a Hilbert space. Given a bounded positive definite operator S on H, and a bounded sequence c={c_k}_k∈N of nonnegative real numbers, the pair (S, c) is frame admissible, if there exists a frame {ƒ_k}_k ∈N on H with frame operator S, such that ||ƒ_k||^2=c_k, k ∈ N. We relate the existence of such frames with the Schur-Horn theorem of majorization, and give a reformulation of the extended version of Schur-Horn theorem, due to A. Neumann. We use this to get necessary conditions (and to generalize known sufficient conditions) for a pair (S, c) to be frame admissible.
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
Frames
Schur Horn theorem
majorization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/101034
Ver los metadatos del registro completo
id |
CONICETDig_e92044b12d8788441692fa7539af1c29 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/101034 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Schur-Horn theorem for operators and frames with prescribed norms and frame operatorAntezana, Jorge AbelMassey, Pedro GustavoRuiz, Mariano AndresStojanoff, DemetrioFramesSchur Horn theoremmajorizationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H be a Hilbert space. Given a bounded positive definite operator S on H, and a bounded sequence c={c_k}_k∈N of nonnegative real numbers, the pair (S, c) is frame admissible, if there exists a frame {ƒ_k}_k ∈N on H with frame operator S, such that ||ƒ_k||^2=c_k, k ∈ N. We relate the existence of such frames with the Schur-Horn theorem of majorization, and give a reformulation of the extended version of Schur-Horn theorem, due to A. Neumann. We use this to get necessary conditions (and to generalize known sufficient conditions) for a pair (S, c) to be frame admissible.Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaUniversity of Illinois at Urbana-Champaign2005-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/101034Antezana, Jorge Abel; Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio; The Schur-Horn theorem for operators and frames with prescribed norms and frame operator; University of Illinois at Urbana-Champaign; Illinois Journal of Mathematics; 51; 2; 10-2005; 537-5600019-20821945-6581CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.projecteuclid.org/euclid.ijm/1258138415info:eu-repo/semantics/altIdentifier/url/https://www.projecteuclid.org/download/pdf_1/euclid.ijm/1258138428info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/math/0508646info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:55Zoai:ri.conicet.gov.ar:11336/101034instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:56.156CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Schur-Horn theorem for operators and frames with prescribed norms and frame operator |
title |
The Schur-Horn theorem for operators and frames with prescribed norms and frame operator |
spellingShingle |
The Schur-Horn theorem for operators and frames with prescribed norms and frame operator Antezana, Jorge Abel Frames Schur Horn theorem majorization |
title_short |
The Schur-Horn theorem for operators and frames with prescribed norms and frame operator |
title_full |
The Schur-Horn theorem for operators and frames with prescribed norms and frame operator |
title_fullStr |
The Schur-Horn theorem for operators and frames with prescribed norms and frame operator |
title_full_unstemmed |
The Schur-Horn theorem for operators and frames with prescribed norms and frame operator |
title_sort |
The Schur-Horn theorem for operators and frames with prescribed norms and frame operator |
dc.creator.none.fl_str_mv |
Antezana, Jorge Abel Massey, Pedro Gustavo Ruiz, Mariano Andres Stojanoff, Demetrio |
author |
Antezana, Jorge Abel |
author_facet |
Antezana, Jorge Abel Massey, Pedro Gustavo Ruiz, Mariano Andres Stojanoff, Demetrio |
author_role |
author |
author2 |
Massey, Pedro Gustavo Ruiz, Mariano Andres Stojanoff, Demetrio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Frames Schur Horn theorem majorization |
topic |
Frames Schur Horn theorem majorization |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let H be a Hilbert space. Given a bounded positive definite operator S on H, and a bounded sequence c={c_k}_k∈N of nonnegative real numbers, the pair (S, c) is frame admissible, if there exists a frame {ƒ_k}_k ∈N on H with frame operator S, such that ||ƒ_k||^2=c_k, k ∈ N. We relate the existence of such frames with the Schur-Horn theorem of majorization, and give a reformulation of the extended version of Schur-Horn theorem, due to A. Neumann. We use this to get necessary conditions (and to generalize known sufficient conditions) for a pair (S, c) to be frame admissible. Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Ruiz, Mariano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
Let H be a Hilbert space. Given a bounded positive definite operator S on H, and a bounded sequence c={c_k}_k∈N of nonnegative real numbers, the pair (S, c) is frame admissible, if there exists a frame {ƒ_k}_k ∈N on H with frame operator S, such that ||ƒ_k||^2=c_k, k ∈ N. We relate the existence of such frames with the Schur-Horn theorem of majorization, and give a reformulation of the extended version of Schur-Horn theorem, due to A. Neumann. We use this to get necessary conditions (and to generalize known sufficient conditions) for a pair (S, c) to be frame admissible. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/101034 Antezana, Jorge Abel; Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio; The Schur-Horn theorem for operators and frames with prescribed norms and frame operator; University of Illinois at Urbana-Champaign; Illinois Journal of Mathematics; 51; 2; 10-2005; 537-560 0019-2082 1945-6581 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/101034 |
identifier_str_mv |
Antezana, Jorge Abel; Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio; The Schur-Horn theorem for operators and frames with prescribed norms and frame operator; University of Illinois at Urbana-Champaign; Illinois Journal of Mathematics; 51; 2; 10-2005; 537-560 0019-2082 1945-6581 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.projecteuclid.org/euclid.ijm/1258138415 info:eu-repo/semantics/altIdentifier/url/https://www.projecteuclid.org/download/pdf_1/euclid.ijm/1258138428 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/math/0508646 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
University of Illinois at Urbana-Champaign |
publisher.none.fl_str_mv |
University of Illinois at Urbana-Champaign |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613322006069248 |
score |
13.070432 |