Schur-Horn theorems in II∞-factors
- Autores
 - Argerami, Martín; Massey, Pedro Gustavo
 - Año de publicación
 - 2013
 - Idioma
 - inglés
 - Tipo de recurso
 - artículo
 - Estado
 - versión publicada
 - Descripción
 - We describe majorization between selfadjoint operators in a ρ-finite II∞ factor (M, τ) in terms of simple spectral relations. For a diffuse abelian von Neumann subalgebra A ⊂ M that admits a (necessarily unique) tracepreserving conditional expectation, denoted by EA, we characterize the closure in the measure topology of the image through EA of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of τ-integrable operators in M.
Facultad de Ciencias Exactas - Materia
 - 
            
        Matemática
II∞ factors
Majorization
Schur-Horn theorem - Nivel de accesibilidad
 - acceso abierto
 - Condiciones de uso
 - http://creativecommons.org/licenses/by-nc-sa/4.0/
 - Repositorio
 .jpg)
- Institución
 - Universidad Nacional de La Plata
 - OAI Identificador
 - oai:sedici.unlp.edu.ar:10915/85129
 
Ver los metadatos del registro completo
| id | 
                                SEDICI_7f81f6f85f8d5d8de7c305eb89cfb298 | 
      
|---|---|
| oai_identifier_str | 
                                oai:sedici.unlp.edu.ar:10915/85129 | 
      
| network_acronym_str | 
                                SEDICI | 
      
| repository_id_str | 
                                1329 | 
      
| network_name_str | 
                                SEDICI (UNLP) | 
      
| spelling | 
                                Schur-Horn theorems in II∞-factorsArgerami, MartínMassey, Pedro GustavoMatemáticaII∞ factorsMajorizationSchur-Horn theoremWe describe majorization between selfadjoint operators in a ρ-finite II∞ factor (M, τ) in terms of simple spectral relations. For a diffuse abelian von Neumann subalgebra A ⊂ M that admits a (necessarily unique) tracepreserving conditional expectation, denoted by EA, we characterize the closure in the measure topology of the image through EA of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of τ-integrable operators in M.Facultad de Ciencias Exactas2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf283-310http://sedici.unlp.edu.ar/handle/10915/85129enginfo:eu-repo/semantics/altIdentifier/issn/0030-8730info:eu-repo/semantics/altIdentifier/doi/10.2140/pjm.2013.261.283info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-29T15:21:34Zoai:sedici.unlp.edu.ar:10915/85129Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-29 15:21:34.766SEDICI (UNLP) - Universidad Nacional de La Platafalse | 
      
| dc.title.none.fl_str_mv | 
                                Schur-Horn theorems in II∞-factors | 
      
| title | 
                                Schur-Horn theorems in II∞-factors | 
      
| spellingShingle | 
                                Schur-Horn theorems in II∞-factors Argerami, Martín Matemática II∞ factors Majorization Schur-Horn theorem  | 
      
| title_short | 
                                Schur-Horn theorems in II∞-factors | 
      
| title_full | 
                                Schur-Horn theorems in II∞-factors | 
      
| title_fullStr | 
                                Schur-Horn theorems in II∞-factors | 
      
| title_full_unstemmed | 
                                Schur-Horn theorems in II∞-factors | 
      
| title_sort | 
                                Schur-Horn theorems in II∞-factors | 
      
| dc.creator.none.fl_str_mv | 
                                Argerami, Martín Massey, Pedro Gustavo  | 
      
| author | 
                                Argerami, Martín | 
      
| author_facet | 
                                Argerami, Martín Massey, Pedro Gustavo  | 
      
| author_role | 
                                author | 
      
| author2 | 
                                Massey, Pedro Gustavo | 
      
| author2_role | 
                                author | 
      
| dc.subject.none.fl_str_mv | 
                                Matemática II∞ factors Majorization Schur-Horn theorem  | 
      
| topic | 
                                Matemática II∞ factors Majorization Schur-Horn theorem  | 
      
| dc.description.none.fl_txt_mv | 
                                We describe majorization between selfadjoint operators in a ρ-finite II∞ factor (M, τ) in terms of simple spectral relations. For a diffuse abelian von Neumann subalgebra A ⊂ M that admits a (necessarily unique) tracepreserving conditional expectation, denoted by EA, we characterize the closure in the measure topology of the image through EA of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of τ-integrable operators in M. Facultad de Ciencias Exactas  | 
      
| description | 
                                We describe majorization between selfadjoint operators in a ρ-finite II∞ factor (M, τ) in terms of simple spectral relations. For a diffuse abelian von Neumann subalgebra A ⊂ M that admits a (necessarily unique) tracepreserving conditional expectation, denoted by EA, we characterize the closure in the measure topology of the image through EA of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of τ-integrable operators in M. | 
      
| publishDate | 
                                2013 | 
      
| dc.date.none.fl_str_mv | 
                                2013 | 
      
| dc.type.none.fl_str_mv | 
                                info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo  | 
      
| format | 
                                article | 
      
| status_str | 
                                publishedVersion | 
      
| dc.identifier.none.fl_str_mv | 
                                http://sedici.unlp.edu.ar/handle/10915/85129 | 
      
| url | 
                                http://sedici.unlp.edu.ar/handle/10915/85129 | 
      
| dc.language.none.fl_str_mv | 
                                eng | 
      
| language | 
                                eng | 
      
| dc.relation.none.fl_str_mv | 
                                info:eu-repo/semantics/altIdentifier/issn/0030-8730 info:eu-repo/semantics/altIdentifier/doi/10.2140/pjm.2013.261.283  | 
      
| dc.rights.none.fl_str_mv | 
                                info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)  | 
      
| eu_rights_str_mv | 
                                openAccess | 
      
| rights_invalid_str_mv | 
                                http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)  | 
      
| dc.format.none.fl_str_mv | 
                                application/pdf 283-310  | 
      
| dc.source.none.fl_str_mv | 
                                reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP  | 
      
| reponame_str | 
                                SEDICI (UNLP) | 
      
| collection | 
                                SEDICI (UNLP) | 
      
| instname_str | 
                                Universidad Nacional de La Plata | 
      
| instacron_str | 
                                UNLP | 
      
| institution | 
                                UNLP | 
      
| repository.name.fl_str_mv | 
                                SEDICI (UNLP) - Universidad Nacional de La Plata | 
      
| repository.mail.fl_str_mv | 
                                alira@sedici.unlp.edu.ar | 
      
| _version_ | 
                                1847428184652382208 | 
      
| score | 
                                13.10058 |