Schur-Horn theorems in II∞-factors
- Autores
- Argerami, Martín; Massey, Pedro Gustavo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We describe majorization between selfadjoint operators in a ρ-finite II∞ factor (M, τ) in terms of simple spectral relations. For a diffuse abelian von Neumann subalgebra A ⊂ M that admits a (necessarily unique) tracepreserving conditional expectation, denoted by EA, we characterize the closure in the measure topology of the image through EA of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of τ-integrable operators in M.
Facultad de Ciencias Exactas - Materia
-
Matemática
II∞ factors
Majorization
Schur-Horn theorem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/85129
Ver los metadatos del registro completo
id |
SEDICI_7f81f6f85f8d5d8de7c305eb89cfb298 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/85129 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Schur-Horn theorems in II∞-factorsArgerami, MartínMassey, Pedro GustavoMatemáticaII∞ factorsMajorizationSchur-Horn theoremWe describe majorization between selfadjoint operators in a ρ-finite II∞ factor (M, τ) in terms of simple spectral relations. For a diffuse abelian von Neumann subalgebra A ⊂ M that admits a (necessarily unique) tracepreserving conditional expectation, denoted by EA, we characterize the closure in the measure topology of the image through EA of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of τ-integrable operators in M.Facultad de Ciencias Exactas2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf283-310http://sedici.unlp.edu.ar/handle/10915/85129enginfo:eu-repo/semantics/altIdentifier/issn/0030-8730info:eu-repo/semantics/altIdentifier/doi/10.2140/pjm.2013.261.283info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:30Zoai:sedici.unlp.edu.ar:10915/85129Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:30.963SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Schur-Horn theorems in II∞-factors |
title |
Schur-Horn theorems in II∞-factors |
spellingShingle |
Schur-Horn theorems in II∞-factors Argerami, Martín Matemática II∞ factors Majorization Schur-Horn theorem |
title_short |
Schur-Horn theorems in II∞-factors |
title_full |
Schur-Horn theorems in II∞-factors |
title_fullStr |
Schur-Horn theorems in II∞-factors |
title_full_unstemmed |
Schur-Horn theorems in II∞-factors |
title_sort |
Schur-Horn theorems in II∞-factors |
dc.creator.none.fl_str_mv |
Argerami, Martín Massey, Pedro Gustavo |
author |
Argerami, Martín |
author_facet |
Argerami, Martín Massey, Pedro Gustavo |
author_role |
author |
author2 |
Massey, Pedro Gustavo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Matemática II∞ factors Majorization Schur-Horn theorem |
topic |
Matemática II∞ factors Majorization Schur-Horn theorem |
dc.description.none.fl_txt_mv |
We describe majorization between selfadjoint operators in a ρ-finite II∞ factor (M, τ) in terms of simple spectral relations. For a diffuse abelian von Neumann subalgebra A ⊂ M that admits a (necessarily unique) tracepreserving conditional expectation, denoted by EA, we characterize the closure in the measure topology of the image through EA of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of τ-integrable operators in M. Facultad de Ciencias Exactas |
description |
We describe majorization between selfadjoint operators in a ρ-finite II∞ factor (M, τ) in terms of simple spectral relations. For a diffuse abelian von Neumann subalgebra A ⊂ M that admits a (necessarily unique) tracepreserving conditional expectation, denoted by EA, we characterize the closure in the measure topology of the image through EA of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of τ-integrable operators in M. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/85129 |
url |
http://sedici.unlp.edu.ar/handle/10915/85129 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0030-8730 info:eu-repo/semantics/altIdentifier/doi/10.2140/pjm.2013.261.283 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 283-310 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616037881872384 |
score |
13.070432 |