Schur-Horn theorems in II∞-factors

Autores
Argerami, Martín; Massey, Pedro Gustavo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We describe majorization between selfadjoint operators in a ρ-finite II∞ factor (M, τ) in terms of simple spectral relations. For a diffuse abelian von Neumann subalgebra A ⊂ M that admits a (necessarily unique) tracepreserving conditional expectation, denoted by EA, we characterize the closure in the measure topology of the image through EA of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of τ-integrable operators in M.
Facultad de Ciencias Exactas
Materia
Matemática
II∞ factors
Majorization
Schur-Horn theorem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/85129

id SEDICI_7f81f6f85f8d5d8de7c305eb89cfb298
oai_identifier_str oai:sedici.unlp.edu.ar:10915/85129
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Schur-Horn theorems in II∞-factorsArgerami, MartínMassey, Pedro GustavoMatemáticaII∞ factorsMajorizationSchur-Horn theoremWe describe majorization between selfadjoint operators in a ρ-finite II∞ factor (M, τ) in terms of simple spectral relations. For a diffuse abelian von Neumann subalgebra A ⊂ M that admits a (necessarily unique) tracepreserving conditional expectation, denoted by EA, we characterize the closure in the measure topology of the image through EA of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of τ-integrable operators in M.Facultad de Ciencias Exactas2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf283-310http://sedici.unlp.edu.ar/handle/10915/85129enginfo:eu-repo/semantics/altIdentifier/issn/0030-8730info:eu-repo/semantics/altIdentifier/doi/10.2140/pjm.2013.261.283info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:30Zoai:sedici.unlp.edu.ar:10915/85129Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:30.963SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Schur-Horn theorems in II∞-factors
title Schur-Horn theorems in II∞-factors
spellingShingle Schur-Horn theorems in II∞-factors
Argerami, Martín
Matemática
II∞ factors
Majorization
Schur-Horn theorem
title_short Schur-Horn theorems in II∞-factors
title_full Schur-Horn theorems in II∞-factors
title_fullStr Schur-Horn theorems in II∞-factors
title_full_unstemmed Schur-Horn theorems in II∞-factors
title_sort Schur-Horn theorems in II∞-factors
dc.creator.none.fl_str_mv Argerami, Martín
Massey, Pedro Gustavo
author Argerami, Martín
author_facet Argerami, Martín
Massey, Pedro Gustavo
author_role author
author2 Massey, Pedro Gustavo
author2_role author
dc.subject.none.fl_str_mv Matemática
II∞ factors
Majorization
Schur-Horn theorem
topic Matemática
II∞ factors
Majorization
Schur-Horn theorem
dc.description.none.fl_txt_mv We describe majorization between selfadjoint operators in a ρ-finite II∞ factor (M, τ) in terms of simple spectral relations. For a diffuse abelian von Neumann subalgebra A ⊂ M that admits a (necessarily unique) tracepreserving conditional expectation, denoted by EA, we characterize the closure in the measure topology of the image through EA of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of τ-integrable operators in M.
Facultad de Ciencias Exactas
description We describe majorization between selfadjoint operators in a ρ-finite II∞ factor (M, τ) in terms of simple spectral relations. For a diffuse abelian von Neumann subalgebra A ⊂ M that admits a (necessarily unique) tracepreserving conditional expectation, denoted by EA, we characterize the closure in the measure topology of the image through EA of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of τ-integrable operators in M.
publishDate 2013
dc.date.none.fl_str_mv 2013
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/85129
url http://sedici.unlp.edu.ar/handle/10915/85129
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0030-8730
info:eu-repo/semantics/altIdentifier/doi/10.2140/pjm.2013.261.283
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
283-310
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616037881872384
score 13.070432