Schur-Horn Theorems In Ii∞-Factors

Autores
Massey, Pedro Gustavo; Argerami, Martin
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We describe majorization between selfadjoint operators in a semi-finite II_\infty factor (M;\tau) in terms of simple spectral relations. For a difuse abelian von Neumann subalgebra A of M that admits a (necessarily unique) trace-preserving conditional expectation, denoted by E_A, we characterize the closure in the measure topology of the image through E_A of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of \tau-integrable selfadjoint operators in M.
Fil: Massey, Pedro Gustavo. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
Fil: Argerami, Martin. Math And Stats Department, University Of Regina; Canadá
Materia
Ii_\Infty Factor
Majorization
Schur-Horn Theorem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/3288

id CONICETDig_62a4829471f783c2c9a04c518fd08c44
oai_identifier_str oai:ri.conicet.gov.ar:11336/3288
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Schur-Horn Theorems In Ii∞-FactorsMassey, Pedro GustavoArgerami, MartinIi_\Infty FactorMajorizationSchur-Horn Theoremhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We describe majorization between selfadjoint operators in a semi-finite II_\infty factor (M;\tau) in terms of simple spectral relations. For a difuse abelian von Neumann subalgebra A of M that admits a (necessarily unique) trace-preserving conditional expectation, denoted by E_A, we characterize the closure in the measure topology of the image through E_A of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of \tau-integrable selfadjoint operators in M.Fil: Massey, Pedro Gustavo. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; ArgentinaFil: Argerami, Martin. Math And Stats Department, University Of Regina; CanadáPacific Journal Mathematics2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3288Massey, Pedro Gustavo; Argerami, Martin; Schur-Horn Theorems In Ii∞-Factors; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 261; 2; 2-2013; 283-3100030-8730enginfo:eu-repo/semantics/altIdentifier/url/http://msp.org/pjm/2013/261-2/p02.xhtmlinfo:eu-repo/semantics/altIdentifier/doi/10.2140/pjm.2013.261.283info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:25:46Zoai:ri.conicet.gov.ar:11336/3288instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:25:46.323CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Schur-Horn Theorems In Ii∞-Factors
title Schur-Horn Theorems In Ii∞-Factors
spellingShingle Schur-Horn Theorems In Ii∞-Factors
Massey, Pedro Gustavo
Ii_\Infty Factor
Majorization
Schur-Horn Theorem
title_short Schur-Horn Theorems In Ii∞-Factors
title_full Schur-Horn Theorems In Ii∞-Factors
title_fullStr Schur-Horn Theorems In Ii∞-Factors
title_full_unstemmed Schur-Horn Theorems In Ii∞-Factors
title_sort Schur-Horn Theorems In Ii∞-Factors
dc.creator.none.fl_str_mv Massey, Pedro Gustavo
Argerami, Martin
author Massey, Pedro Gustavo
author_facet Massey, Pedro Gustavo
Argerami, Martin
author_role author
author2 Argerami, Martin
author2_role author
dc.subject.none.fl_str_mv Ii_\Infty Factor
Majorization
Schur-Horn Theorem
topic Ii_\Infty Factor
Majorization
Schur-Horn Theorem
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We describe majorization between selfadjoint operators in a semi-finite II_\infty factor (M;\tau) in terms of simple spectral relations. For a difuse abelian von Neumann subalgebra A of M that admits a (necessarily unique) trace-preserving conditional expectation, denoted by E_A, we characterize the closure in the measure topology of the image through E_A of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of \tau-integrable selfadjoint operators in M.
Fil: Massey, Pedro Gustavo. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
Fil: Argerami, Martin. Math And Stats Department, University Of Regina; Canadá
description We describe majorization between selfadjoint operators in a semi-finite II_\infty factor (M;\tau) in terms of simple spectral relations. For a difuse abelian von Neumann subalgebra A of M that admits a (necessarily unique) trace-preserving conditional expectation, denoted by E_A, we characterize the closure in the measure topology of the image through E_A of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of \tau-integrable selfadjoint operators in M.
publishDate 2013
dc.date.none.fl_str_mv 2013-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/3288
Massey, Pedro Gustavo; Argerami, Martin; Schur-Horn Theorems In Ii∞-Factors; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 261; 2; 2-2013; 283-310
0030-8730
url http://hdl.handle.net/11336/3288
identifier_str_mv Massey, Pedro Gustavo; Argerami, Martin; Schur-Horn Theorems In Ii∞-Factors; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 261; 2; 2-2013; 283-310
0030-8730
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://msp.org/pjm/2013/261-2/p02.xhtml
info:eu-repo/semantics/altIdentifier/doi/10.2140/pjm.2013.261.283
info:eu-repo/semantics/altIdentifier/doi/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pacific Journal Mathematics
publisher.none.fl_str_mv Pacific Journal Mathematics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614257068474368
score 13.070432