Schur-Horn Theorems In Ii∞-Factors
- Autores
 - Massey, Pedro Gustavo; Argerami, Martin
 - Año de publicación
 - 2013
 - Idioma
 - inglés
 - Tipo de recurso
 - artículo
 - Estado
 - versión publicada
 - Descripción
 - We describe majorization between selfadjoint operators in a semi-finite II_\infty factor (M;\tau) in terms of simple spectral relations. For a difuse abelian von Neumann subalgebra A of M that admits a (necessarily unique) trace-preserving conditional expectation, denoted by E_A, we characterize the closure in the measure topology of the image through E_A of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of \tau-integrable selfadjoint operators in M.
Fil: Massey, Pedro Gustavo. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
Fil: Argerami, Martin. Math And Stats Department, University Of Regina; Canadá - Materia
 - 
            
        Ii_\Infty Factor
Majorization
Schur-Horn Theorem - Nivel de accesibilidad
 - acceso abierto
 - Condiciones de uso
 - https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
 - Repositorio
 .jpg)
- Institución
 - Consejo Nacional de Investigaciones Científicas y Técnicas
 - OAI Identificador
 - oai:ri.conicet.gov.ar:11336/3288
 
Ver los metadatos del registro completo
| id | 
                                CONICETDig_62a4829471f783c2c9a04c518fd08c44 | 
      
|---|---|
| oai_identifier_str | 
                                oai:ri.conicet.gov.ar:11336/3288 | 
      
| network_acronym_str | 
                                CONICETDig | 
      
| repository_id_str | 
                                3498 | 
      
| network_name_str | 
                                CONICET Digital (CONICET) | 
      
| spelling | 
                                Schur-Horn Theorems In Ii∞-FactorsMassey, Pedro GustavoArgerami, MartinIi_\Infty FactorMajorizationSchur-Horn Theoremhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We describe majorization between selfadjoint operators in a semi-finite II_\infty factor (M;\tau) in terms of simple spectral relations. For a difuse abelian von Neumann subalgebra A of M that admits a (necessarily unique) trace-preserving conditional expectation, denoted by E_A, we characterize the closure in the measure topology of the image through E_A of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of \tau-integrable selfadjoint operators in M.Fil: Massey, Pedro Gustavo. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; ArgentinaFil: Argerami, Martin. Math And Stats Department, University Of Regina; CanadáPacific Journal Mathematics2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3288Massey, Pedro Gustavo; Argerami, Martin; Schur-Horn Theorems In Ii∞-Factors; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 261; 2; 2-2013; 283-3100030-8730enginfo:eu-repo/semantics/altIdentifier/url/http://msp.org/pjm/2013/261-2/p02.xhtmlinfo:eu-repo/semantics/altIdentifier/doi/10.2140/pjm.2013.261.283info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:31:20Zoai:ri.conicet.gov.ar:11336/3288instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:31:20.468CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse | 
      
| dc.title.none.fl_str_mv | 
                                Schur-Horn Theorems In Ii∞-Factors | 
      
| title | 
                                Schur-Horn Theorems In Ii∞-Factors | 
      
| spellingShingle | 
                                Schur-Horn Theorems In Ii∞-Factors Massey, Pedro Gustavo Ii_\Infty Factor Majorization Schur-Horn Theorem  | 
      
| title_short | 
                                Schur-Horn Theorems In Ii∞-Factors | 
      
| title_full | 
                                Schur-Horn Theorems In Ii∞-Factors | 
      
| title_fullStr | 
                                Schur-Horn Theorems In Ii∞-Factors | 
      
| title_full_unstemmed | 
                                Schur-Horn Theorems In Ii∞-Factors | 
      
| title_sort | 
                                Schur-Horn Theorems In Ii∞-Factors | 
      
| dc.creator.none.fl_str_mv | 
                                Massey, Pedro Gustavo Argerami, Martin  | 
      
| author | 
                                Massey, Pedro Gustavo | 
      
| author_facet | 
                                Massey, Pedro Gustavo Argerami, Martin  | 
      
| author_role | 
                                author | 
      
| author2 | 
                                Argerami, Martin | 
      
| author2_role | 
                                author | 
      
| dc.subject.none.fl_str_mv | 
                                Ii_\Infty Factor Majorization Schur-Horn Theorem  | 
      
| topic | 
                                Ii_\Infty Factor Majorization Schur-Horn Theorem  | 
      
| purl_subject.fl_str_mv | 
                                https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1  | 
      
| dc.description.none.fl_txt_mv | 
                                We describe majorization between selfadjoint operators in a semi-finite II_\infty factor (M;\tau) in terms of simple spectral relations. For a difuse abelian von Neumann subalgebra A of M that admits a (necessarily unique) trace-preserving conditional expectation, denoted by E_A, we characterize the closure in the measure topology of the image through E_A of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of \tau-integrable selfadjoint operators in M. Fil: Massey, Pedro Gustavo. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina Fil: Argerami, Martin. Math And Stats Department, University Of Regina; Canadá  | 
      
| description | 
                                We describe majorization between selfadjoint operators in a semi-finite II_\infty factor (M;\tau) in terms of simple spectral relations. For a difuse abelian von Neumann subalgebra A of M that admits a (necessarily unique) trace-preserving conditional expectation, denoted by E_A, we characterize the closure in the measure topology of the image through E_A of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of \tau-integrable selfadjoint operators in M. | 
      
| publishDate | 
                                2013 | 
      
| dc.date.none.fl_str_mv | 
                                2013-02 | 
      
| dc.type.none.fl_str_mv | 
                                info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo  | 
      
| format | 
                                article | 
      
| status_str | 
                                publishedVersion | 
      
| dc.identifier.none.fl_str_mv | 
                                http://hdl.handle.net/11336/3288 Massey, Pedro Gustavo; Argerami, Martin; Schur-Horn Theorems In Ii∞-Factors; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 261; 2; 2-2013; 283-310 0030-8730  | 
      
| url | 
                                http://hdl.handle.net/11336/3288 | 
      
| identifier_str_mv | 
                                Massey, Pedro Gustavo; Argerami, Martin; Schur-Horn Theorems In Ii∞-Factors; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 261; 2; 2-2013; 283-310 0030-8730  | 
      
| dc.language.none.fl_str_mv | 
                                eng | 
      
| language | 
                                eng | 
      
| dc.relation.none.fl_str_mv | 
                                info:eu-repo/semantics/altIdentifier/url/http://msp.org/pjm/2013/261-2/p02.xhtml info:eu-repo/semantics/altIdentifier/doi/10.2140/pjm.2013.261.283 info:eu-repo/semantics/altIdentifier/doi/  | 
      
| dc.rights.none.fl_str_mv | 
                                info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  | 
      
| eu_rights_str_mv | 
                                openAccess | 
      
| rights_invalid_str_mv | 
                                https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ | 
      
| dc.format.none.fl_str_mv | 
                                application/pdf application/pdf  | 
      
| dc.publisher.none.fl_str_mv | 
                                Pacific Journal Mathematics | 
      
| publisher.none.fl_str_mv | 
                                Pacific Journal Mathematics | 
      
| dc.source.none.fl_str_mv | 
                                reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas  | 
      
| reponame_str | 
                                CONICET Digital (CONICET) | 
      
| collection | 
                                CONICET Digital (CONICET) | 
      
| instname_str | 
                                Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.name.fl_str_mv | 
                                CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.mail.fl_str_mv | 
                                dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar | 
      
| _version_ | 
                                1847427261091807232 | 
      
| score | 
                                12.589754 |