Schur-Horn Theorems In Ii∞-Factors
- Autores
- Massey, Pedro Gustavo; Argerami, Martin
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We describe majorization between selfadjoint operators in a semi-finite II_\infty factor (M;\tau) in terms of simple spectral relations. For a difuse abelian von Neumann subalgebra A of M that admits a (necessarily unique) trace-preserving conditional expectation, denoted by E_A, we characterize the closure in the measure topology of the image through E_A of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of \tau-integrable selfadjoint operators in M.
Fil: Massey, Pedro Gustavo. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
Fil: Argerami, Martin. Math And Stats Department, University Of Regina; Canadá - Materia
-
Ii_\Infty Factor
Majorization
Schur-Horn Theorem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3288
Ver los metadatos del registro completo
id |
CONICETDig_62a4829471f783c2c9a04c518fd08c44 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3288 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Schur-Horn Theorems In Ii∞-FactorsMassey, Pedro GustavoArgerami, MartinIi_\Infty FactorMajorizationSchur-Horn Theoremhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We describe majorization between selfadjoint operators in a semi-finite II_\infty factor (M;\tau) in terms of simple spectral relations. For a difuse abelian von Neumann subalgebra A of M that admits a (necessarily unique) trace-preserving conditional expectation, denoted by E_A, we characterize the closure in the measure topology of the image through E_A of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of \tau-integrable selfadjoint operators in M.Fil: Massey, Pedro Gustavo. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; ArgentinaFil: Argerami, Martin. Math And Stats Department, University Of Regina; CanadáPacific Journal Mathematics2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3288Massey, Pedro Gustavo; Argerami, Martin; Schur-Horn Theorems In Ii∞-Factors; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 261; 2; 2-2013; 283-3100030-8730enginfo:eu-repo/semantics/altIdentifier/url/http://msp.org/pjm/2013/261-2/p02.xhtmlinfo:eu-repo/semantics/altIdentifier/doi/10.2140/pjm.2013.261.283info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:25:46Zoai:ri.conicet.gov.ar:11336/3288instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:25:46.323CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Schur-Horn Theorems In Ii∞-Factors |
title |
Schur-Horn Theorems In Ii∞-Factors |
spellingShingle |
Schur-Horn Theorems In Ii∞-Factors Massey, Pedro Gustavo Ii_\Infty Factor Majorization Schur-Horn Theorem |
title_short |
Schur-Horn Theorems In Ii∞-Factors |
title_full |
Schur-Horn Theorems In Ii∞-Factors |
title_fullStr |
Schur-Horn Theorems In Ii∞-Factors |
title_full_unstemmed |
Schur-Horn Theorems In Ii∞-Factors |
title_sort |
Schur-Horn Theorems In Ii∞-Factors |
dc.creator.none.fl_str_mv |
Massey, Pedro Gustavo Argerami, Martin |
author |
Massey, Pedro Gustavo |
author_facet |
Massey, Pedro Gustavo Argerami, Martin |
author_role |
author |
author2 |
Argerami, Martin |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ii_\Infty Factor Majorization Schur-Horn Theorem |
topic |
Ii_\Infty Factor Majorization Schur-Horn Theorem |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We describe majorization between selfadjoint operators in a semi-finite II_\infty factor (M;\tau) in terms of simple spectral relations. For a difuse abelian von Neumann subalgebra A of M that admits a (necessarily unique) trace-preserving conditional expectation, denoted by E_A, we characterize the closure in the measure topology of the image through E_A of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of \tau-integrable selfadjoint operators in M. Fil: Massey, Pedro Gustavo. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina Fil: Argerami, Martin. Math And Stats Department, University Of Regina; Canadá |
description |
We describe majorization between selfadjoint operators in a semi-finite II_\infty factor (M;\tau) in terms of simple spectral relations. For a difuse abelian von Neumann subalgebra A of M that admits a (necessarily unique) trace-preserving conditional expectation, denoted by E_A, we characterize the closure in the measure topology of the image through E_A of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of \tau-integrable selfadjoint operators in M. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3288 Massey, Pedro Gustavo; Argerami, Martin; Schur-Horn Theorems In Ii∞-Factors; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 261; 2; 2-2013; 283-310 0030-8730 |
url |
http://hdl.handle.net/11336/3288 |
identifier_str_mv |
Massey, Pedro Gustavo; Argerami, Martin; Schur-Horn Theorems In Ii∞-Factors; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 261; 2; 2-2013; 283-310 0030-8730 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://msp.org/pjm/2013/261-2/p02.xhtml info:eu-repo/semantics/altIdentifier/doi/10.2140/pjm.2013.261.283 info:eu-repo/semantics/altIdentifier/doi/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pacific Journal Mathematics |
publisher.none.fl_str_mv |
Pacific Journal Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614257068474368 |
score |
13.070432 |