A matrix formula for Schur complements of nonnegative selfadjoint linear relations
- Autores
- Contino, Maximiliano; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- If a nonnegative selfadjoint linear relation A in a Hilbert space and a closed subspace S are assumed to satisfy that the domain of A is invariant under the orthogonal projector onto S, then A admits a particular matrix representation with respect to the decomposition S⊕S⊥. This matrix representation of A is used to give explicit formulae for the Schur complement of A on S as well as the S-compression of A.
Fil: Contino, Maximiliano. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina
Fil: Marcantognini Palacios, Stefania Alma María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
LINEAR RELATIONS
SCHUR COMPLEMENT
SHORTED OPERATORS
UNBOUNDED SELFADJOINT OPERATORS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/203181
Ver los metadatos del registro completo
id |
CONICETDig_54edf2346a914a53063ddb50f18a5635 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/203181 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A matrix formula for Schur complements of nonnegative selfadjoint linear relationsContino, MaximilianoMaestripieri, Alejandra LauraMarcantognini Palacios, Stefania Alma MaríaLINEAR RELATIONSSCHUR COMPLEMENTSHORTED OPERATORSUNBOUNDED SELFADJOINT OPERATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1If a nonnegative selfadjoint linear relation A in a Hilbert space and a closed subspace S are assumed to satisfy that the domain of A is invariant under the orthogonal projector onto S, then A admits a particular matrix representation with respect to the decomposition S⊕S⊥. This matrix representation of A is used to give explicit formulae for the Schur complement of A on S as well as the S-compression of A.Fil: Contino, Maximiliano. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; ArgentinaFil: Marcantognini Palacios, Stefania Alma María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaElsevier Science Inc.2022-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/203181Contino, Maximiliano; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; A matrix formula for Schur complements of nonnegative selfadjoint linear relations; Elsevier Science Inc.; Linear Algebra and its Applications; 654; 12-2022; 143-1760024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0024379522003214?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2022.09.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:13Zoai:ri.conicet.gov.ar:11336/203181instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:13.395CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A matrix formula for Schur complements of nonnegative selfadjoint linear relations |
title |
A matrix formula for Schur complements of nonnegative selfadjoint linear relations |
spellingShingle |
A matrix formula for Schur complements of nonnegative selfadjoint linear relations Contino, Maximiliano LINEAR RELATIONS SCHUR COMPLEMENT SHORTED OPERATORS UNBOUNDED SELFADJOINT OPERATORS |
title_short |
A matrix formula for Schur complements of nonnegative selfadjoint linear relations |
title_full |
A matrix formula for Schur complements of nonnegative selfadjoint linear relations |
title_fullStr |
A matrix formula for Schur complements of nonnegative selfadjoint linear relations |
title_full_unstemmed |
A matrix formula for Schur complements of nonnegative selfadjoint linear relations |
title_sort |
A matrix formula for Schur complements of nonnegative selfadjoint linear relations |
dc.creator.none.fl_str_mv |
Contino, Maximiliano Maestripieri, Alejandra Laura Marcantognini Palacios, Stefania Alma María |
author |
Contino, Maximiliano |
author_facet |
Contino, Maximiliano Maestripieri, Alejandra Laura Marcantognini Palacios, Stefania Alma María |
author_role |
author |
author2 |
Maestripieri, Alejandra Laura Marcantognini Palacios, Stefania Alma María |
author2_role |
author author |
dc.subject.none.fl_str_mv |
LINEAR RELATIONS SCHUR COMPLEMENT SHORTED OPERATORS UNBOUNDED SELFADJOINT OPERATORS |
topic |
LINEAR RELATIONS SCHUR COMPLEMENT SHORTED OPERATORS UNBOUNDED SELFADJOINT OPERATORS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
If a nonnegative selfadjoint linear relation A in a Hilbert space and a closed subspace S are assumed to satisfy that the domain of A is invariant under the orthogonal projector onto S, then A admits a particular matrix representation with respect to the decomposition S⊕S⊥. This matrix representation of A is used to give explicit formulae for the Schur complement of A on S as well as the S-compression of A. Fil: Contino, Maximiliano. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina Fil: Marcantognini Palacios, Stefania Alma María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
If a nonnegative selfadjoint linear relation A in a Hilbert space and a closed subspace S are assumed to satisfy that the domain of A is invariant under the orthogonal projector onto S, then A admits a particular matrix representation with respect to the decomposition S⊕S⊥. This matrix representation of A is used to give explicit formulae for the Schur complement of A on S as well as the S-compression of A. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/203181 Contino, Maximiliano; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; A matrix formula for Schur complements of nonnegative selfadjoint linear relations; Elsevier Science Inc.; Linear Algebra and its Applications; 654; 12-2022; 143-176 0024-3795 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/203181 |
identifier_str_mv |
Contino, Maximiliano; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; A matrix formula for Schur complements of nonnegative selfadjoint linear relations; Elsevier Science Inc.; Linear Algebra and its Applications; 654; 12-2022; 143-176 0024-3795 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0024379522003214?via%3Dihub info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2022.09.003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc. |
publisher.none.fl_str_mv |
Elsevier Science Inc. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269899694538752 |
score |
13.13397 |