A matrix formula for Schur complements of nonnegative selfadjoint linear relations

Autores
Contino, Maximiliano; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
If a nonnegative selfadjoint linear relation A in a Hilbert space and a closed subspace S are assumed to satisfy that the domain of A is invariant under the orthogonal projector onto S, then A admits a particular matrix representation with respect to the decomposition S⊕S⊥. This matrix representation of A is used to give explicit formulae for the Schur complement of A on S as well as the S-compression of A.
Fil: Contino, Maximiliano. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina
Fil: Marcantognini Palacios, Stefania Alma María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
LINEAR RELATIONS
SCHUR COMPLEMENT
SHORTED OPERATORS
UNBOUNDED SELFADJOINT OPERATORS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/203181

id CONICETDig_54edf2346a914a53063ddb50f18a5635
oai_identifier_str oai:ri.conicet.gov.ar:11336/203181
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A matrix formula for Schur complements of nonnegative selfadjoint linear relationsContino, MaximilianoMaestripieri, Alejandra LauraMarcantognini Palacios, Stefania Alma MaríaLINEAR RELATIONSSCHUR COMPLEMENTSHORTED OPERATORSUNBOUNDED SELFADJOINT OPERATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1If a nonnegative selfadjoint linear relation A in a Hilbert space and a closed subspace S are assumed to satisfy that the domain of A is invariant under the orthogonal projector onto S, then A admits a particular matrix representation with respect to the decomposition S⊕S⊥. This matrix representation of A is used to give explicit formulae for the Schur complement of A on S as well as the S-compression of A.Fil: Contino, Maximiliano. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; ArgentinaFil: Marcantognini Palacios, Stefania Alma María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaElsevier Science Inc.2022-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/203181Contino, Maximiliano; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; A matrix formula for Schur complements of nonnegative selfadjoint linear relations; Elsevier Science Inc.; Linear Algebra and its Applications; 654; 12-2022; 143-1760024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0024379522003214?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2022.09.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:13Zoai:ri.conicet.gov.ar:11336/203181instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:13.395CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A matrix formula for Schur complements of nonnegative selfadjoint linear relations
title A matrix formula for Schur complements of nonnegative selfadjoint linear relations
spellingShingle A matrix formula for Schur complements of nonnegative selfadjoint linear relations
Contino, Maximiliano
LINEAR RELATIONS
SCHUR COMPLEMENT
SHORTED OPERATORS
UNBOUNDED SELFADJOINT OPERATORS
title_short A matrix formula for Schur complements of nonnegative selfadjoint linear relations
title_full A matrix formula for Schur complements of nonnegative selfadjoint linear relations
title_fullStr A matrix formula for Schur complements of nonnegative selfadjoint linear relations
title_full_unstemmed A matrix formula for Schur complements of nonnegative selfadjoint linear relations
title_sort A matrix formula for Schur complements of nonnegative selfadjoint linear relations
dc.creator.none.fl_str_mv Contino, Maximiliano
Maestripieri, Alejandra Laura
Marcantognini Palacios, Stefania Alma María
author Contino, Maximiliano
author_facet Contino, Maximiliano
Maestripieri, Alejandra Laura
Marcantognini Palacios, Stefania Alma María
author_role author
author2 Maestripieri, Alejandra Laura
Marcantognini Palacios, Stefania Alma María
author2_role author
author
dc.subject.none.fl_str_mv LINEAR RELATIONS
SCHUR COMPLEMENT
SHORTED OPERATORS
UNBOUNDED SELFADJOINT OPERATORS
topic LINEAR RELATIONS
SCHUR COMPLEMENT
SHORTED OPERATORS
UNBOUNDED SELFADJOINT OPERATORS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv If a nonnegative selfadjoint linear relation A in a Hilbert space and a closed subspace S are assumed to satisfy that the domain of A is invariant under the orthogonal projector onto S, then A admits a particular matrix representation with respect to the decomposition S⊕S⊥. This matrix representation of A is used to give explicit formulae for the Schur complement of A on S as well as the S-compression of A.
Fil: Contino, Maximiliano. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina
Fil: Marcantognini Palacios, Stefania Alma María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description If a nonnegative selfadjoint linear relation A in a Hilbert space and a closed subspace S are assumed to satisfy that the domain of A is invariant under the orthogonal projector onto S, then A admits a particular matrix representation with respect to the decomposition S⊕S⊥. This matrix representation of A is used to give explicit formulae for the Schur complement of A on S as well as the S-compression of A.
publishDate 2022
dc.date.none.fl_str_mv 2022-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/203181
Contino, Maximiliano; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; A matrix formula for Schur complements of nonnegative selfadjoint linear relations; Elsevier Science Inc.; Linear Algebra and its Applications; 654; 12-2022; 143-176
0024-3795
CONICET Digital
CONICET
url http://hdl.handle.net/11336/203181
identifier_str_mv Contino, Maximiliano; Maestripieri, Alejandra Laura; Marcantognini Palacios, Stefania Alma María; A matrix formula for Schur complements of nonnegative selfadjoint linear relations; Elsevier Science Inc.; Linear Algebra and its Applications; 654; 12-2022; 143-176
0024-3795
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0024379522003214?via%3Dihub
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2022.09.003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc.
publisher.none.fl_str_mv Elsevier Science Inc.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269899694538752
score 13.13397