A note on a question by T. Ando
- Autores
- Andruchow, Esteban
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In 1979 T. Ando posed the following question: suppose E and F are two projectionvalued measures defined on an algebra Σ of subsets of Ω, which verifykE(∆) − F(∆)k ≤ 1 − δ, ∆ ∈ Σ,for some δ > 0. Does there exist a unitary operator u such that u∗E(∆)u = F(∆) for all∆ ∈ Σ? He knew that the answer was affirmative if both measures were strongly σ-additiveand maximal (i.e. E and F have ciclic vectors). In this note, we show that the answer isalso affirmative if both measures take values in a common finite von Neumann algebra.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de General Sarmiento; Argentina - Materia
-
Spectral measure
Unitary equivalence
Finite algebra - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18941
Ver los metadatos del registro completo
id |
CONICETDig_0cea2a0b16704fd31efb46102b83eb6f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18941 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A note on a question by T. AndoAndruchow, EstebanSpectral measureUnitary equivalenceFinite algebrahttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In 1979 T. Ando posed the following question: suppose E and F are two projectionvalued measures defined on an algebra Σ of subsets of Ω, which verifykE(∆) − F(∆)k ≤ 1 − δ, ∆ ∈ Σ,for some δ > 0. Does there exist a unitary operator u such that u∗E(∆)u = F(∆) for all∆ ∈ Σ? He knew that the answer was affirmative if both measures were strongly σ-additiveand maximal (i.e. E and F have ciclic vectors). In this note, we show that the answer isalso affirmative if both measures take values in a common finite von Neumann algebra.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de General Sarmiento; ArgentinaUniversity of Szeged. Bolyai Institute2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18941Andruchow, Esteban; A note on a question by T. Ando; University of Szeged. Bolyai Institute; Acta Scientiarum Mathematicarum (szeged); 80; 3-4; 11-2014; 651-6580001-6969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pub.acta.hu/acta/showCustomerArticle.action?id=38878&dataObjectType=article&returnAction=showCustomerVolume&sessionDataSetId=400e733b855873aa&style=info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:20:46Zoai:ri.conicet.gov.ar:11336/18941instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:20:46.276CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A note on a question by T. Ando |
title |
A note on a question by T. Ando |
spellingShingle |
A note on a question by T. Ando Andruchow, Esteban Spectral measure Unitary equivalence Finite algebra |
title_short |
A note on a question by T. Ando |
title_full |
A note on a question by T. Ando |
title_fullStr |
A note on a question by T. Ando |
title_full_unstemmed |
A note on a question by T. Ando |
title_sort |
A note on a question by T. Ando |
dc.creator.none.fl_str_mv |
Andruchow, Esteban |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban |
author_role |
author |
dc.subject.none.fl_str_mv |
Spectral measure Unitary equivalence Finite algebra |
topic |
Spectral measure Unitary equivalence Finite algebra |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In 1979 T. Ando posed the following question: suppose E and F are two projectionvalued measures defined on an algebra Σ of subsets of Ω, which verifykE(∆) − F(∆)k ≤ 1 − δ, ∆ ∈ Σ,for some δ > 0. Does there exist a unitary operator u such that u∗E(∆)u = F(∆) for all∆ ∈ Σ? He knew that the answer was affirmative if both measures were strongly σ-additiveand maximal (i.e. E and F have ciclic vectors). In this note, we show that the answer isalso affirmative if both measures take values in a common finite von Neumann algebra. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de General Sarmiento; Argentina |
description |
In 1979 T. Ando posed the following question: suppose E and F are two projectionvalued measures defined on an algebra Σ of subsets of Ω, which verifykE(∆) − F(∆)k ≤ 1 − δ, ∆ ∈ Σ,for some δ > 0. Does there exist a unitary operator u such that u∗E(∆)u = F(∆) for all∆ ∈ Σ? He knew that the answer was affirmative if both measures were strongly σ-additiveand maximal (i.e. E and F have ciclic vectors). In this note, we show that the answer isalso affirmative if both measures take values in a common finite von Neumann algebra. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18941 Andruchow, Esteban; A note on a question by T. Ando; University of Szeged. Bolyai Institute; Acta Scientiarum Mathematicarum (szeged); 80; 3-4; 11-2014; 651-658 0001-6969 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18941 |
identifier_str_mv |
Andruchow, Esteban; A note on a question by T. Ando; University of Szeged. Bolyai Institute; Acta Scientiarum Mathematicarum (szeged); 80; 3-4; 11-2014; 651-658 0001-6969 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pub.acta.hu/acta/showCustomerArticle.action?id=38878&dataObjectType=article&returnAction=showCustomerVolume&sessionDataSetId=400e733b855873aa&style= |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
University of Szeged. Bolyai Institute |
publisher.none.fl_str_mv |
University of Szeged. Bolyai Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083356197912576 |
score |
13.22299 |