A Categorical Equivalence Motivated by Kalman’s Construction

Autores
Sagastume, Marta Susana; San Martín, Hernán Javier
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
An equivalence between the category of MV-algebras and the category MV∙ is given in Castiglioni et al. (Studia Logica 102(1):67–92, 2014). An integral residuated lattice with bottom is an MV-algebra if and only if it satisfies the equations a=¬¬a,(a→b)∨(b→a)=1 and a⊙(a→b)=a∧b. An object of MV∙ is a residuated lattice which in particular satisfies some equations which correspond to the previous equations. In this paper we extend the equivalence to the category whose objects are pairs (A, I), where A is an MV-algebra and I is an ideal of A.
Facultad de Ciencias Exactas
Materia
Matemática
MV-algebras
Ideals
Adjunction
Categorical equivalence
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/107887

id SEDICI_5745ec5aeda598b64dced2923c4c2fed
oai_identifier_str oai:sedici.unlp.edu.ar:10915/107887
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A Categorical Equivalence Motivated by Kalman’s ConstructionSagastume, Marta SusanaSan Martín, Hernán JavierMatemáticaMV-algebrasIdealsAdjunctionCategorical equivalenceAn equivalence between the category of MV-algebras and the category MV∙ is given in Castiglioni et al. (Studia Logica 102(1):67–92, 2014). An integral residuated lattice with bottom is an MV-algebra if and only if it satisfies the equations a=¬¬a,(a→b)∨(b→a)=1 and a⊙(a→b)=a∧b. An object of MV∙ is a residuated lattice which in particular satisfies some equations which correspond to the previous equations. In this paper we extend the equivalence to the category whose objects are pairs (A, I), where A is an MV-algebra and I is an ideal of A.Facultad de Ciencias Exactas2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf185-208http://sedici.unlp.edu.ar/handle/10915/107887enginfo:eu-repo/semantics/altIdentifier/issn/1572-8730info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-015-9632-1info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:56:22Zoai:sedici.unlp.edu.ar:10915/107887Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:56:22.813SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A Categorical Equivalence Motivated by Kalman’s Construction
title A Categorical Equivalence Motivated by Kalman’s Construction
spellingShingle A Categorical Equivalence Motivated by Kalman’s Construction
Sagastume, Marta Susana
Matemática
MV-algebras
Ideals
Adjunction
Categorical equivalence
title_short A Categorical Equivalence Motivated by Kalman’s Construction
title_full A Categorical Equivalence Motivated by Kalman’s Construction
title_fullStr A Categorical Equivalence Motivated by Kalman’s Construction
title_full_unstemmed A Categorical Equivalence Motivated by Kalman’s Construction
title_sort A Categorical Equivalence Motivated by Kalman’s Construction
dc.creator.none.fl_str_mv Sagastume, Marta Susana
San Martín, Hernán Javier
author Sagastume, Marta Susana
author_facet Sagastume, Marta Susana
San Martín, Hernán Javier
author_role author
author2 San Martín, Hernán Javier
author2_role author
dc.subject.none.fl_str_mv Matemática
MV-algebras
Ideals
Adjunction
Categorical equivalence
topic Matemática
MV-algebras
Ideals
Adjunction
Categorical equivalence
dc.description.none.fl_txt_mv An equivalence between the category of MV-algebras and the category MV∙ is given in Castiglioni et al. (Studia Logica 102(1):67–92, 2014). An integral residuated lattice with bottom is an MV-algebra if and only if it satisfies the equations a=¬¬a,(a→b)∨(b→a)=1 and a⊙(a→b)=a∧b. An object of MV∙ is a residuated lattice which in particular satisfies some equations which correspond to the previous equations. In this paper we extend the equivalence to the category whose objects are pairs (A, I), where A is an MV-algebra and I is an ideal of A.
Facultad de Ciencias Exactas
description An equivalence between the category of MV-algebras and the category MV∙ is given in Castiglioni et al. (Studia Logica 102(1):67–92, 2014). An integral residuated lattice with bottom is an MV-algebra if and only if it satisfies the equations a=¬¬a,(a→b)∨(b→a)=1 and a⊙(a→b)=a∧b. An object of MV∙ is a residuated lattice which in particular satisfies some equations which correspond to the previous equations. In this paper we extend the equivalence to the category whose objects are pairs (A, I), where A is an MV-algebra and I is an ideal of A.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/107887
url http://sedici.unlp.edu.ar/handle/10915/107887
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1572-8730
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-015-9632-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
185-208
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260452393877504
score 13.13397