A Categorical Equivalence Motivated by Kalman’s Construction

Autores
Sagastume, Marta Susana; San Martín, Hernán Javier
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
An equivalence between the category of MV-algebras and the category (Formula presented.) is given in Castiglioni et al. (Studia Logica 102(1):67–92, 2014). An integral residuated lattice with bottom is an MV-algebra if and only if it satisfies the equations (Formula presented.) and (Formula presented.). An object of (Formula presented.) is a residuated lattice which in particular satisfies some equations which correspond to the previous equations. In this paper we extend the equivalence to the category whose objects are pairs (A, I), where A is an MV-algebra and I is an ideal of A.
Fil: Sagastume, Marta Susana. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: San Martín, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Materia
Adjunction
Categorical Equivalence
Ideals
Mv-Algebras
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/54338

id CONICETDig_4430c1fd52d14121e1544ca3eaee90bc
oai_identifier_str oai:ri.conicet.gov.ar:11336/54338
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Categorical Equivalence Motivated by Kalman’s ConstructionSagastume, Marta SusanaSan Martín, Hernán JavierAdjunctionCategorical EquivalenceIdealsMv-Algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1An equivalence between the category of MV-algebras and the category (Formula presented.) is given in Castiglioni et al. (Studia Logica 102(1):67–92, 2014). An integral residuated lattice with bottom is an MV-algebra if and only if it satisfies the equations (Formula presented.) and (Formula presented.). An object of (Formula presented.) is a residuated lattice which in particular satisfies some equations which correspond to the previous equations. In this paper we extend the equivalence to the category whose objects are pairs (A, I), where A is an MV-algebra and I is an ideal of A.Fil: Sagastume, Marta Susana. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: San Martín, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaKluwer Academic Publishers2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54338Sagastume, Marta Susana; San Martín, Hernán Javier; A Categorical Equivalence Motivated by Kalman’s Construction; Kluwer Academic Publishers; Studia Logica; 104; 2; 4-2016; 185-2080039-3215CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-015-9632-1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11225-015-9632-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:16Zoai:ri.conicet.gov.ar:11336/54338instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:16.641CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Categorical Equivalence Motivated by Kalman’s Construction
title A Categorical Equivalence Motivated by Kalman’s Construction
spellingShingle A Categorical Equivalence Motivated by Kalman’s Construction
Sagastume, Marta Susana
Adjunction
Categorical Equivalence
Ideals
Mv-Algebras
title_short A Categorical Equivalence Motivated by Kalman’s Construction
title_full A Categorical Equivalence Motivated by Kalman’s Construction
title_fullStr A Categorical Equivalence Motivated by Kalman’s Construction
title_full_unstemmed A Categorical Equivalence Motivated by Kalman’s Construction
title_sort A Categorical Equivalence Motivated by Kalman’s Construction
dc.creator.none.fl_str_mv Sagastume, Marta Susana
San Martín, Hernán Javier
author Sagastume, Marta Susana
author_facet Sagastume, Marta Susana
San Martín, Hernán Javier
author_role author
author2 San Martín, Hernán Javier
author2_role author
dc.subject.none.fl_str_mv Adjunction
Categorical Equivalence
Ideals
Mv-Algebras
topic Adjunction
Categorical Equivalence
Ideals
Mv-Algebras
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv An equivalence between the category of MV-algebras and the category (Formula presented.) is given in Castiglioni et al. (Studia Logica 102(1):67–92, 2014). An integral residuated lattice with bottom is an MV-algebra if and only if it satisfies the equations (Formula presented.) and (Formula presented.). An object of (Formula presented.) is a residuated lattice which in particular satisfies some equations which correspond to the previous equations. In this paper we extend the equivalence to the category whose objects are pairs (A, I), where A is an MV-algebra and I is an ideal of A.
Fil: Sagastume, Marta Susana. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: San Martín, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
description An equivalence between the category of MV-algebras and the category (Formula presented.) is given in Castiglioni et al. (Studia Logica 102(1):67–92, 2014). An integral residuated lattice with bottom is an MV-algebra if and only if it satisfies the equations (Formula presented.) and (Formula presented.). An object of (Formula presented.) is a residuated lattice which in particular satisfies some equations which correspond to the previous equations. In this paper we extend the equivalence to the category whose objects are pairs (A, I), where A is an MV-algebra and I is an ideal of A.
publishDate 2016
dc.date.none.fl_str_mv 2016-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/54338
Sagastume, Marta Susana; San Martín, Hernán Javier; A Categorical Equivalence Motivated by Kalman’s Construction; Kluwer Academic Publishers; Studia Logica; 104; 2; 4-2016; 185-208
0039-3215
CONICET Digital
CONICET
url http://hdl.handle.net/11336/54338
identifier_str_mv Sagastume, Marta Susana; San Martín, Hernán Javier; A Categorical Equivalence Motivated by Kalman’s Construction; Kluwer Academic Publishers; Studia Logica; 104; 2; 4-2016; 185-208
0039-3215
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-015-9632-1
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11225-015-9632-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Kluwer Academic Publishers
publisher.none.fl_str_mv Kluwer Academic Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268590343979008
score 13.13397