A Categorical Equivalence Motivated by Kalman’s Construction
- Autores
- Sagastume, Marta Susana; San Martín, Hernán Javier
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An equivalence between the category of MV-algebras and the category (Formula presented.) is given in Castiglioni et al. (Studia Logica 102(1):67–92, 2014). An integral residuated lattice with bottom is an MV-algebra if and only if it satisfies the equations (Formula presented.) and (Formula presented.). An object of (Formula presented.) is a residuated lattice which in particular satisfies some equations which correspond to the previous equations. In this paper we extend the equivalence to the category whose objects are pairs (A, I), where A is an MV-algebra and I is an ideal of A.
Fil: Sagastume, Marta Susana. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: San Martín, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina - Materia
-
Adjunction
Categorical Equivalence
Ideals
Mv-Algebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/54338
Ver los metadatos del registro completo
id |
CONICETDig_4430c1fd52d14121e1544ca3eaee90bc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/54338 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Categorical Equivalence Motivated by Kalman’s ConstructionSagastume, Marta SusanaSan Martín, Hernán JavierAdjunctionCategorical EquivalenceIdealsMv-Algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1An equivalence between the category of MV-algebras and the category (Formula presented.) is given in Castiglioni et al. (Studia Logica 102(1):67–92, 2014). An integral residuated lattice with bottom is an MV-algebra if and only if it satisfies the equations (Formula presented.) and (Formula presented.). An object of (Formula presented.) is a residuated lattice which in particular satisfies some equations which correspond to the previous equations. In this paper we extend the equivalence to the category whose objects are pairs (A, I), where A is an MV-algebra and I is an ideal of A.Fil: Sagastume, Marta Susana. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: San Martín, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaKluwer Academic Publishers2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54338Sagastume, Marta Susana; San Martín, Hernán Javier; A Categorical Equivalence Motivated by Kalman’s Construction; Kluwer Academic Publishers; Studia Logica; 104; 2; 4-2016; 185-2080039-3215CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-015-9632-1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11225-015-9632-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:16Zoai:ri.conicet.gov.ar:11336/54338instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:16.641CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Categorical Equivalence Motivated by Kalman’s Construction |
title |
A Categorical Equivalence Motivated by Kalman’s Construction |
spellingShingle |
A Categorical Equivalence Motivated by Kalman’s Construction Sagastume, Marta Susana Adjunction Categorical Equivalence Ideals Mv-Algebras |
title_short |
A Categorical Equivalence Motivated by Kalman’s Construction |
title_full |
A Categorical Equivalence Motivated by Kalman’s Construction |
title_fullStr |
A Categorical Equivalence Motivated by Kalman’s Construction |
title_full_unstemmed |
A Categorical Equivalence Motivated by Kalman’s Construction |
title_sort |
A Categorical Equivalence Motivated by Kalman’s Construction |
dc.creator.none.fl_str_mv |
Sagastume, Marta Susana San Martín, Hernán Javier |
author |
Sagastume, Marta Susana |
author_facet |
Sagastume, Marta Susana San Martín, Hernán Javier |
author_role |
author |
author2 |
San Martín, Hernán Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
Adjunction Categorical Equivalence Ideals Mv-Algebras |
topic |
Adjunction Categorical Equivalence Ideals Mv-Algebras |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
An equivalence between the category of MV-algebras and the category (Formula presented.) is given in Castiglioni et al. (Studia Logica 102(1):67–92, 2014). An integral residuated lattice with bottom is an MV-algebra if and only if it satisfies the equations (Formula presented.) and (Formula presented.). An object of (Formula presented.) is a residuated lattice which in particular satisfies some equations which correspond to the previous equations. In this paper we extend the equivalence to the category whose objects are pairs (A, I), where A is an MV-algebra and I is an ideal of A. Fil: Sagastume, Marta Susana. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: San Martín, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina |
description |
An equivalence between the category of MV-algebras and the category (Formula presented.) is given in Castiglioni et al. (Studia Logica 102(1):67–92, 2014). An integral residuated lattice with bottom is an MV-algebra if and only if it satisfies the equations (Formula presented.) and (Formula presented.). An object of (Formula presented.) is a residuated lattice which in particular satisfies some equations which correspond to the previous equations. In this paper we extend the equivalence to the category whose objects are pairs (A, I), where A is an MV-algebra and I is an ideal of A. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/54338 Sagastume, Marta Susana; San Martín, Hernán Javier; A Categorical Equivalence Motivated by Kalman’s Construction; Kluwer Academic Publishers; Studia Logica; 104; 2; 4-2016; 185-208 0039-3215 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/54338 |
identifier_str_mv |
Sagastume, Marta Susana; San Martín, Hernán Javier; A Categorical Equivalence Motivated by Kalman’s Construction; Kluwer Academic Publishers; Studia Logica; 104; 2; 4-2016; 185-208 0039-3215 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-015-9632-1 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11225-015-9632-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Kluwer Academic Publishers |
publisher.none.fl_str_mv |
Kluwer Academic Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268590343979008 |
score |
13.13397 |