Eigenvalue approximation by mixed non-conforming finite element methods

Autores
Dello Russo, Anahí
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we give a theory for the approximation of eigenvalue problems in mixed form by non-conforming methods. We then apply this theory to analyze the problem of determining the vibrational modes of a linear elastic structure using the classical Hellinger-Reissner mixed formulation. We show that a numerical method based on the lowest-order Arnold-Winther non-conforming space provides a spectrally correct approximation of the eigenvalue/eigenvector pairs. Moreover, the method is proven to converge with optimal order.
Facultad de Ciencias Exactas
Materia
Matemática
Spectral analysis
Eigenvalue problems in mixed form
Non-conforming finite element methods
Linear elasticity equations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/146263

id SEDICI_4bf0eebf876bd1645b5c725b459b5833
oai_identifier_str oai:sedici.unlp.edu.ar:10915/146263
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Eigenvalue approximation by mixed non-conforming finite element methodsDello Russo, AnahíMatemáticaSpectral analysisEigenvalue problems in mixed formNon-conforming finite element methodsLinear elasticity equationsIn this paper we give a theory for the approximation of eigenvalue problems in mixed form by non-conforming methods. We then apply this theory to analyze the problem of determining the vibrational modes of a linear elastic structure using the classical Hellinger-Reissner mixed formulation. We show that a numerical method based on the lowest-order Arnold-Winther non-conforming space provides a spectrally correct approximation of the eigenvalue/eigenvector pairs. Moreover, the method is proven to converge with optimal order.Facultad de Ciencias Exactas2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf563-597http://sedici.unlp.edu.ar/handle/10915/146263enginfo:eu-repo/semantics/altIdentifier/issn/0008-0624info:eu-repo/semantics/altIdentifier/issn/1126-5434info:eu-repo/semantics/altIdentifier/doi/10.1007/s10092-013-0101-9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:32:32Zoai:sedici.unlp.edu.ar:10915/146263Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:32:33.173SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Eigenvalue approximation by mixed non-conforming finite element methods
title Eigenvalue approximation by mixed non-conforming finite element methods
spellingShingle Eigenvalue approximation by mixed non-conforming finite element methods
Dello Russo, Anahí
Matemática
Spectral analysis
Eigenvalue problems in mixed form
Non-conforming finite element methods
Linear elasticity equations
title_short Eigenvalue approximation by mixed non-conforming finite element methods
title_full Eigenvalue approximation by mixed non-conforming finite element methods
title_fullStr Eigenvalue approximation by mixed non-conforming finite element methods
title_full_unstemmed Eigenvalue approximation by mixed non-conforming finite element methods
title_sort Eigenvalue approximation by mixed non-conforming finite element methods
dc.creator.none.fl_str_mv Dello Russo, Anahí
author Dello Russo, Anahí
author_facet Dello Russo, Anahí
author_role author
dc.subject.none.fl_str_mv Matemática
Spectral analysis
Eigenvalue problems in mixed form
Non-conforming finite element methods
Linear elasticity equations
topic Matemática
Spectral analysis
Eigenvalue problems in mixed form
Non-conforming finite element methods
Linear elasticity equations
dc.description.none.fl_txt_mv In this paper we give a theory for the approximation of eigenvalue problems in mixed form by non-conforming methods. We then apply this theory to analyze the problem of determining the vibrational modes of a linear elastic structure using the classical Hellinger-Reissner mixed formulation. We show that a numerical method based on the lowest-order Arnold-Winther non-conforming space provides a spectrally correct approximation of the eigenvalue/eigenvector pairs. Moreover, the method is proven to converge with optimal order.
Facultad de Ciencias Exactas
description In this paper we give a theory for the approximation of eigenvalue problems in mixed form by non-conforming methods. We then apply this theory to analyze the problem of determining the vibrational modes of a linear elastic structure using the classical Hellinger-Reissner mixed formulation. We show that a numerical method based on the lowest-order Arnold-Winther non-conforming space provides a spectrally correct approximation of the eigenvalue/eigenvector pairs. Moreover, the method is proven to converge with optimal order.
publishDate 2014
dc.date.none.fl_str_mv 2014
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/146263
url http://sedici.unlp.edu.ar/handle/10915/146263
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0008-0624
info:eu-repo/semantics/altIdentifier/issn/1126-5434
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10092-013-0101-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
563-597
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616205160153088
score 13.070432