Eigenvalue approximation by mixed non-conforming finite element methods
- Autores
- Dello Russo, Anahí
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we give a theory for the approximation of eigenvalue problems in mixed form by non-conforming methods. We then apply this theory to analyze the problem of determining the vibrational modes of a linear elastic structure using the classical Hellinger-Reissner mixed formulation. We show that a numerical method based on the lowest-order Arnold-Winther non-conforming space provides a spectrally correct approximation of the eigenvalue/eigenvector pairs. Moreover, the method is proven to converge with optimal order.
Facultad de Ciencias Exactas - Materia
-
Matemática
Spectral analysis
Eigenvalue problems in mixed form
Non-conforming finite element methods
Linear elasticity equations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/146263
Ver los metadatos del registro completo
| id |
SEDICI_4bf0eebf876bd1645b5c725b459b5833 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/146263 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Eigenvalue approximation by mixed non-conforming finite element methodsDello Russo, AnahíMatemáticaSpectral analysisEigenvalue problems in mixed formNon-conforming finite element methodsLinear elasticity equationsIn this paper we give a theory for the approximation of eigenvalue problems in mixed form by non-conforming methods. We then apply this theory to analyze the problem of determining the vibrational modes of a linear elastic structure using the classical Hellinger-Reissner mixed formulation. We show that a numerical method based on the lowest-order Arnold-Winther non-conforming space provides a spectrally correct approximation of the eigenvalue/eigenvector pairs. Moreover, the method is proven to converge with optimal order.Facultad de Ciencias Exactas2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf563-597http://sedici.unlp.edu.ar/handle/10915/146263enginfo:eu-repo/semantics/altIdentifier/issn/0008-0624info:eu-repo/semantics/altIdentifier/issn/1126-5434info:eu-repo/semantics/altIdentifier/doi/10.1007/s10092-013-0101-9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-05T13:11:55Zoai:sedici.unlp.edu.ar:10915/146263Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-05 13:11:56.195SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Eigenvalue approximation by mixed non-conforming finite element methods |
| title |
Eigenvalue approximation by mixed non-conforming finite element methods |
| spellingShingle |
Eigenvalue approximation by mixed non-conforming finite element methods Dello Russo, Anahí Matemática Spectral analysis Eigenvalue problems in mixed form Non-conforming finite element methods Linear elasticity equations |
| title_short |
Eigenvalue approximation by mixed non-conforming finite element methods |
| title_full |
Eigenvalue approximation by mixed non-conforming finite element methods |
| title_fullStr |
Eigenvalue approximation by mixed non-conforming finite element methods |
| title_full_unstemmed |
Eigenvalue approximation by mixed non-conforming finite element methods |
| title_sort |
Eigenvalue approximation by mixed non-conforming finite element methods |
| dc.creator.none.fl_str_mv |
Dello Russo, Anahí |
| author |
Dello Russo, Anahí |
| author_facet |
Dello Russo, Anahí |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Matemática Spectral analysis Eigenvalue problems in mixed form Non-conforming finite element methods Linear elasticity equations |
| topic |
Matemática Spectral analysis Eigenvalue problems in mixed form Non-conforming finite element methods Linear elasticity equations |
| dc.description.none.fl_txt_mv |
In this paper we give a theory for the approximation of eigenvalue problems in mixed form by non-conforming methods. We then apply this theory to analyze the problem of determining the vibrational modes of a linear elastic structure using the classical Hellinger-Reissner mixed formulation. We show that a numerical method based on the lowest-order Arnold-Winther non-conforming space provides a spectrally correct approximation of the eigenvalue/eigenvector pairs. Moreover, the method is proven to converge with optimal order. Facultad de Ciencias Exactas |
| description |
In this paper we give a theory for the approximation of eigenvalue problems in mixed form by non-conforming methods. We then apply this theory to analyze the problem of determining the vibrational modes of a linear elastic structure using the classical Hellinger-Reissner mixed formulation. We show that a numerical method based on the lowest-order Arnold-Winther non-conforming space provides a spectrally correct approximation of the eigenvalue/eigenvector pairs. Moreover, the method is proven to converge with optimal order. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/146263 |
| url |
http://sedici.unlp.edu.ar/handle/10915/146263 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0008-0624 info:eu-repo/semantics/altIdentifier/issn/1126-5434 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10092-013-0101-9 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 563-597 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1847978764710969344 |
| score |
12.61048 |