Lower bounds for Orlicz eigenvalues
- Autores
- Salort, Ariel Martin
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article we consider the following weighted nonlinear eigenvalue problem for the g-Laplacian {equation presented} with Dirichlet boundary conditions. Here w is a suitable weight and g = G' and h = H' are appropriated Young functions satisfying the so called Δ' condition, which includes for instance logarithmic perturbation of powers and different power behaviors near zero and infinity. We prove several properties on its spectrum, being our main goal to obtain lower bounds of eigenvalues in terms of G, H, w and the normalization μ of the corresponding eigenfunctions. We introduce some new strategies to obtain results that generalize several inequalities from the literature of p-Laplacian type eigenvalues.
Fil: Salort, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina - Materia
-
EIGENVALUE BOUNDS
LYAPUNOV INEQUALITY
ORLICZ SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/204745
Ver los metadatos del registro completo
id |
CONICETDig_0484a647b2c655df4287d85bb8298246 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/204745 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Lower bounds for Orlicz eigenvaluesSalort, Ariel MartinEIGENVALUE BOUNDSLYAPUNOV INEQUALITYORLICZ SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we consider the following weighted nonlinear eigenvalue problem for the g-Laplacian {equation presented} with Dirichlet boundary conditions. Here w is a suitable weight and g = G' and h = H' are appropriated Young functions satisfying the so called Δ' condition, which includes for instance logarithmic perturbation of powers and different power behaviors near zero and infinity. We prove several properties on its spectrum, being our main goal to obtain lower bounds of eigenvalues in terms of G, H, w and the normalization μ of the corresponding eigenfunctions. We introduce some new strategies to obtain results that generalize several inequalities from the literature of p-Laplacian type eigenvalues.Fil: Salort, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaAmerican Institute of Mathematical Sciences2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/204745Salort, Ariel Martin; Lower bounds for Orlicz eigenvalues; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 42; 3; 3-2022; 1415-14341078-09471553-5231CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/dcds.2021158info:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2021158info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2104.07562v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:52Zoai:ri.conicet.gov.ar:11336/204745instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:52.327CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Lower bounds for Orlicz eigenvalues |
title |
Lower bounds for Orlicz eigenvalues |
spellingShingle |
Lower bounds for Orlicz eigenvalues Salort, Ariel Martin EIGENVALUE BOUNDS LYAPUNOV INEQUALITY ORLICZ SPACES |
title_short |
Lower bounds for Orlicz eigenvalues |
title_full |
Lower bounds for Orlicz eigenvalues |
title_fullStr |
Lower bounds for Orlicz eigenvalues |
title_full_unstemmed |
Lower bounds for Orlicz eigenvalues |
title_sort |
Lower bounds for Orlicz eigenvalues |
dc.creator.none.fl_str_mv |
Salort, Ariel Martin |
author |
Salort, Ariel Martin |
author_facet |
Salort, Ariel Martin |
author_role |
author |
dc.subject.none.fl_str_mv |
EIGENVALUE BOUNDS LYAPUNOV INEQUALITY ORLICZ SPACES |
topic |
EIGENVALUE BOUNDS LYAPUNOV INEQUALITY ORLICZ SPACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article we consider the following weighted nonlinear eigenvalue problem for the g-Laplacian {equation presented} with Dirichlet boundary conditions. Here w is a suitable weight and g = G' and h = H' are appropriated Young functions satisfying the so called Δ' condition, which includes for instance logarithmic perturbation of powers and different power behaviors near zero and infinity. We prove several properties on its spectrum, being our main goal to obtain lower bounds of eigenvalues in terms of G, H, w and the normalization μ of the corresponding eigenfunctions. We introduce some new strategies to obtain results that generalize several inequalities from the literature of p-Laplacian type eigenvalues. Fil: Salort, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina |
description |
In this article we consider the following weighted nonlinear eigenvalue problem for the g-Laplacian {equation presented} with Dirichlet boundary conditions. Here w is a suitable weight and g = G' and h = H' are appropriated Young functions satisfying the so called Δ' condition, which includes for instance logarithmic perturbation of powers and different power behaviors near zero and infinity. We prove several properties on its spectrum, being our main goal to obtain lower bounds of eigenvalues in terms of G, H, w and the normalization μ of the corresponding eigenfunctions. We introduce some new strategies to obtain results that generalize several inequalities from the literature of p-Laplacian type eigenvalues. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/204745 Salort, Ariel Martin; Lower bounds for Orlicz eigenvalues; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 42; 3; 3-2022; 1415-1434 1078-0947 1553-5231 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/204745 |
identifier_str_mv |
Salort, Ariel Martin; Lower bounds for Orlicz eigenvalues; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 42; 3; 3-2022; 1415-1434 1078-0947 1553-5231 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/dcds.2021158 info:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2021158 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2104.07562v1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613681250304000 |
score |
13.070432 |