Estimates for eigenvalues of quasilinear elliptic systems
- Autores
- De Nápoli, P.L.; Pinasco, J.P.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we introduce the generalized eigenvalues of a quasilinear elliptic system of resonant type. We prove the existence of infinitely many continuous eigencurves, which are obtained by variational methods. For the one-dimensional problem, we obtain an hyperbolic type function defining a region which contains all the generalized eigenvalues (variational or not), and the proof is based on a suitable generalization of Lyapunov's inequality for systems of ordinary differential equations. We also obtain a family of curves bounding by above the kth variational eigencurve. © 2006 Elsevier Inc. All rights reserved.
Fil:De Nápoli, P.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Differ. Equ. 2006;227(1):102-115
- Materia
-
Eigenvalue bounds
Elliptic system
Lyapunov inequality
p-Laplacian - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00220396_v227_n1_p102_DeNapoli
Ver los metadatos del registro completo
id |
BDUBAFCEN_37cfb794e159218dfe8f94d518c35bd9 |
---|---|
oai_identifier_str |
paperaa:paper_00220396_v227_n1_p102_DeNapoli |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Estimates for eigenvalues of quasilinear elliptic systemsDe Nápoli, P.L.Pinasco, J.P.Eigenvalue boundsElliptic systemLyapunov inequalityp-LaplacianIn this paper we introduce the generalized eigenvalues of a quasilinear elliptic system of resonant type. We prove the existence of infinitely many continuous eigencurves, which are obtained by variational methods. For the one-dimensional problem, we obtain an hyperbolic type function defining a region which contains all the generalized eigenvalues (variational or not), and the proof is based on a suitable generalization of Lyapunov's inequality for systems of ordinary differential equations. We also obtain a family of curves bounding by above the kth variational eigencurve. © 2006 Elsevier Inc. All rights reserved.Fil:De Nápoli, P.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p102_DeNapoliJ. Differ. Equ. 2006;227(1):102-115reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:52Zpaperaa:paper_00220396_v227_n1_p102_DeNapoliInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:53.515Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Estimates for eigenvalues of quasilinear elliptic systems |
title |
Estimates for eigenvalues of quasilinear elliptic systems |
spellingShingle |
Estimates for eigenvalues of quasilinear elliptic systems De Nápoli, P.L. Eigenvalue bounds Elliptic system Lyapunov inequality p-Laplacian |
title_short |
Estimates for eigenvalues of quasilinear elliptic systems |
title_full |
Estimates for eigenvalues of quasilinear elliptic systems |
title_fullStr |
Estimates for eigenvalues of quasilinear elliptic systems |
title_full_unstemmed |
Estimates for eigenvalues of quasilinear elliptic systems |
title_sort |
Estimates for eigenvalues of quasilinear elliptic systems |
dc.creator.none.fl_str_mv |
De Nápoli, P.L. Pinasco, J.P. |
author |
De Nápoli, P.L. |
author_facet |
De Nápoli, P.L. Pinasco, J.P. |
author_role |
author |
author2 |
Pinasco, J.P. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Eigenvalue bounds Elliptic system Lyapunov inequality p-Laplacian |
topic |
Eigenvalue bounds Elliptic system Lyapunov inequality p-Laplacian |
dc.description.none.fl_txt_mv |
In this paper we introduce the generalized eigenvalues of a quasilinear elliptic system of resonant type. We prove the existence of infinitely many continuous eigencurves, which are obtained by variational methods. For the one-dimensional problem, we obtain an hyperbolic type function defining a region which contains all the generalized eigenvalues (variational or not), and the proof is based on a suitable generalization of Lyapunov's inequality for systems of ordinary differential equations. We also obtain a family of curves bounding by above the kth variational eigencurve. © 2006 Elsevier Inc. All rights reserved. Fil:De Nápoli, P.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
In this paper we introduce the generalized eigenvalues of a quasilinear elliptic system of resonant type. We prove the existence of infinitely many continuous eigencurves, which are obtained by variational methods. For the one-dimensional problem, we obtain an hyperbolic type function defining a region which contains all the generalized eigenvalues (variational or not), and the proof is based on a suitable generalization of Lyapunov's inequality for systems of ordinary differential equations. We also obtain a family of curves bounding by above the kth variational eigencurve. © 2006 Elsevier Inc. All rights reserved. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p102_DeNapoli |
url |
http://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p102_DeNapoli |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Differ. Equ. 2006;227(1):102-115 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618734165032960 |
score |
13.070432 |