Estimates for eigenvalues of quasilinear elliptic systems

Autores
De Nápoli, P.L.; Pinasco, J.P.
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we introduce the generalized eigenvalues of a quasilinear elliptic system of resonant type. We prove the existence of infinitely many continuous eigencurves, which are obtained by variational methods. For the one-dimensional problem, we obtain an hyperbolic type function defining a region which contains all the generalized eigenvalues (variational or not), and the proof is based on a suitable generalization of Lyapunov's inequality for systems of ordinary differential equations. We also obtain a family of curves bounding by above the kth variational eigencurve. © 2006 Elsevier Inc. All rights reserved.
Fil:De Nápoli, P.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Differ. Equ. 2006;227(1):102-115
Materia
Eigenvalue bounds
Elliptic system
Lyapunov inequality
p-Laplacian
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00220396_v227_n1_p102_DeNapoli

id BDUBAFCEN_37cfb794e159218dfe8f94d518c35bd9
oai_identifier_str paperaa:paper_00220396_v227_n1_p102_DeNapoli
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Estimates for eigenvalues of quasilinear elliptic systemsDe Nápoli, P.L.Pinasco, J.P.Eigenvalue boundsElliptic systemLyapunov inequalityp-LaplacianIn this paper we introduce the generalized eigenvalues of a quasilinear elliptic system of resonant type. We prove the existence of infinitely many continuous eigencurves, which are obtained by variational methods. For the one-dimensional problem, we obtain an hyperbolic type function defining a region which contains all the generalized eigenvalues (variational or not), and the proof is based on a suitable generalization of Lyapunov's inequality for systems of ordinary differential equations. We also obtain a family of curves bounding by above the kth variational eigencurve. © 2006 Elsevier Inc. All rights reserved.Fil:De Nápoli, P.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p102_DeNapoliJ. Differ. Equ. 2006;227(1):102-115reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:52Zpaperaa:paper_00220396_v227_n1_p102_DeNapoliInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:53.515Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Estimates for eigenvalues of quasilinear elliptic systems
title Estimates for eigenvalues of quasilinear elliptic systems
spellingShingle Estimates for eigenvalues of quasilinear elliptic systems
De Nápoli, P.L.
Eigenvalue bounds
Elliptic system
Lyapunov inequality
p-Laplacian
title_short Estimates for eigenvalues of quasilinear elliptic systems
title_full Estimates for eigenvalues of quasilinear elliptic systems
title_fullStr Estimates for eigenvalues of quasilinear elliptic systems
title_full_unstemmed Estimates for eigenvalues of quasilinear elliptic systems
title_sort Estimates for eigenvalues of quasilinear elliptic systems
dc.creator.none.fl_str_mv De Nápoli, P.L.
Pinasco, J.P.
author De Nápoli, P.L.
author_facet De Nápoli, P.L.
Pinasco, J.P.
author_role author
author2 Pinasco, J.P.
author2_role author
dc.subject.none.fl_str_mv Eigenvalue bounds
Elliptic system
Lyapunov inequality
p-Laplacian
topic Eigenvalue bounds
Elliptic system
Lyapunov inequality
p-Laplacian
dc.description.none.fl_txt_mv In this paper we introduce the generalized eigenvalues of a quasilinear elliptic system of resonant type. We prove the existence of infinitely many continuous eigencurves, which are obtained by variational methods. For the one-dimensional problem, we obtain an hyperbolic type function defining a region which contains all the generalized eigenvalues (variational or not), and the proof is based on a suitable generalization of Lyapunov's inequality for systems of ordinary differential equations. We also obtain a family of curves bounding by above the kth variational eigencurve. © 2006 Elsevier Inc. All rights reserved.
Fil:De Nápoli, P.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In this paper we introduce the generalized eigenvalues of a quasilinear elliptic system of resonant type. We prove the existence of infinitely many continuous eigencurves, which are obtained by variational methods. For the one-dimensional problem, we obtain an hyperbolic type function defining a region which contains all the generalized eigenvalues (variational or not), and the proof is based on a suitable generalization of Lyapunov's inequality for systems of ordinary differential equations. We also obtain a family of curves bounding by above the kth variational eigencurve. © 2006 Elsevier Inc. All rights reserved.
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p102_DeNapoli
url http://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p102_DeNapoli
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Differ. Equ. 2006;227(1):102-115
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618734165032960
score 13.070432