Local Bounds, Harnack's Inequality and Hölder Continuity for for divergence type elliptic equations with non-standard growth

Autores
Wolanski, Noemi Irene
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We obtain a Harnack type inequality for solutions to elliptic equations in divergence form with non-standard p(x)-type growth. A model equation is the inhomogeneous p(x)-Laplacian. Namely, ∆p(x)u := div |∇u| p(x)−2∇u = f(x) in Ω, for which we prove Harnack’s inequality when f ∈ Lq0 (Ω) if max{1, N p1 } < q0 ≤ ∞. The constant in Harnack’s inequality depends on u only through k|u| p(x)k p2−p1 L1(Ω) . Dependence of the constant on u is known to be necessary in the case of variable p(x). As in previous papers, log-H¨older continuity on the exponent p(x) is assumed. We also prove that weak solutions are locally bounded and H¨older continuous when f ∈ Lq0(x) (Ω) with q0 ∈ C(Ω) and max{1, N p(x) } < q0(x) in Ω. These results are then generalized to elliptic equations div A(x, u, ∇u) = B(x, u, ∇u) with p(x)-type growth.
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Harnack'S Inequality
Variable Exponent Spaces
Local Bounds.
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18906

id CONICETDig_fbcd9032ae851690d37a0f3dce067fca
oai_identifier_str oai:ri.conicet.gov.ar:11336/18906
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Local Bounds, Harnack's Inequality and Hölder Continuity for for divergence type elliptic equations with non-standard growthWolanski, Noemi IreneHarnack'S InequalityVariable Exponent SpacesLocal Bounds.https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We obtain a Harnack type inequality for solutions to elliptic equations in divergence form with non-standard p(x)-type growth. A model equation is the inhomogeneous p(x)-Laplacian. Namely, ∆p(x)u := div |∇u| p(x)−2∇u = f(x) in Ω, for which we prove Harnack’s inequality when f ∈ Lq0 (Ω) if max{1, N p1 } < q0 ≤ ∞. The constant in Harnack’s inequality depends on u only through k|u| p(x)k p2−p1 L1(Ω) . Dependence of the constant on u is known to be necessary in the case of variable p(x). As in previous papers, log-H¨older continuity on the exponent p(x) is assumed. We also prove that weak solutions are locally bounded and H¨older continuous when f ∈ Lq0(x) (Ω) with q0 ∈ C(Ω) and max{1, N p(x) } < q0(x) in Ω. These results are then generalized to elliptic equations div A(x, u, ∇u) = B(x, u, ∇u) with p(x)-type growth.Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaUnión Matemática Argentina2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/18906Wolanski, Noemi Irene; Local Bounds, Harnack's Inequality and Hölder Continuity for for divergence type elliptic equations with non-standard growth; Unión Matemática Argentina; Revista de la Union Matemática Argentina; 56; 1; 4-2015; 73-1050041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v56n1/v56n1a05.pdfinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.2227info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:22:34Zoai:ri.conicet.gov.ar:11336/18906instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:22:35.154CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Local Bounds, Harnack's Inequality and Hölder Continuity for for divergence type elliptic equations with non-standard growth
title Local Bounds, Harnack's Inequality and Hölder Continuity for for divergence type elliptic equations with non-standard growth
spellingShingle Local Bounds, Harnack's Inequality and Hölder Continuity for for divergence type elliptic equations with non-standard growth
Wolanski, Noemi Irene
Harnack'S Inequality
Variable Exponent Spaces
Local Bounds.
title_short Local Bounds, Harnack's Inequality and Hölder Continuity for for divergence type elliptic equations with non-standard growth
title_full Local Bounds, Harnack's Inequality and Hölder Continuity for for divergence type elliptic equations with non-standard growth
title_fullStr Local Bounds, Harnack's Inequality and Hölder Continuity for for divergence type elliptic equations with non-standard growth
title_full_unstemmed Local Bounds, Harnack's Inequality and Hölder Continuity for for divergence type elliptic equations with non-standard growth
title_sort Local Bounds, Harnack's Inequality and Hölder Continuity for for divergence type elliptic equations with non-standard growth
dc.creator.none.fl_str_mv Wolanski, Noemi Irene
author Wolanski, Noemi Irene
author_facet Wolanski, Noemi Irene
author_role author
dc.subject.none.fl_str_mv Harnack'S Inequality
Variable Exponent Spaces
Local Bounds.
topic Harnack'S Inequality
Variable Exponent Spaces
Local Bounds.
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We obtain a Harnack type inequality for solutions to elliptic equations in divergence form with non-standard p(x)-type growth. A model equation is the inhomogeneous p(x)-Laplacian. Namely, ∆p(x)u := div |∇u| p(x)−2∇u = f(x) in Ω, for which we prove Harnack’s inequality when f ∈ Lq0 (Ω) if max{1, N p1 } < q0 ≤ ∞. The constant in Harnack’s inequality depends on u only through k|u| p(x)k p2−p1 L1(Ω) . Dependence of the constant on u is known to be necessary in the case of variable p(x). As in previous papers, log-H¨older continuity on the exponent p(x) is assumed. We also prove that weak solutions are locally bounded and H¨older continuous when f ∈ Lq0(x) (Ω) with q0 ∈ C(Ω) and max{1, N p(x) } < q0(x) in Ω. These results are then generalized to elliptic equations div A(x, u, ∇u) = B(x, u, ∇u) with p(x)-type growth.
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description We obtain a Harnack type inequality for solutions to elliptic equations in divergence form with non-standard p(x)-type growth. A model equation is the inhomogeneous p(x)-Laplacian. Namely, ∆p(x)u := div |∇u| p(x)−2∇u = f(x) in Ω, for which we prove Harnack’s inequality when f ∈ Lq0 (Ω) if max{1, N p1 } < q0 ≤ ∞. The constant in Harnack’s inequality depends on u only through k|u| p(x)k p2−p1 L1(Ω) . Dependence of the constant on u is known to be necessary in the case of variable p(x). As in previous papers, log-H¨older continuity on the exponent p(x) is assumed. We also prove that weak solutions are locally bounded and H¨older continuous when f ∈ Lq0(x) (Ω) with q0 ∈ C(Ω) and max{1, N p(x) } < q0(x) in Ω. These results are then generalized to elliptic equations div A(x, u, ∇u) = B(x, u, ∇u) with p(x)-type growth.
publishDate 2015
dc.date.none.fl_str_mv 2015-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18906
Wolanski, Noemi Irene; Local Bounds, Harnack's Inequality and Hölder Continuity for for divergence type elliptic equations with non-standard growth; Unión Matemática Argentina; Revista de la Union Matemática Argentina; 56; 1; 4-2015; 73-105
0041-6932
1669-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18906
identifier_str_mv Wolanski, Noemi Irene; Local Bounds, Harnack's Inequality and Hölder Continuity for for divergence type elliptic equations with non-standard growth; Unión Matemática Argentina; Revista de la Union Matemática Argentina; 56; 1; 4-2015; 73-105
0041-6932
1669-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v56n1/v56n1a05.pdf
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.2227
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614217511993344
score 13.070432