Lyapunov-type inequalities for partial differential equations

Autores
de Napoli, Pablo Luis; Pinasco, Juan Pablo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we present a Lyapunov inequality for linear and quasilinear elliptic differential operators in N-dimensional domains Ω. We also consider singular and degenerate elliptic problems with Ap coefficients involving the p-Laplace operator with zero Dirichlet boundary condition.As an application of the inequalities obtained, we derive lower bounds for the first eigenvalue of the p-Laplacian, and compare them with the usual ones in the literature.
Fil: de Napoli, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Eigenvalues Bounds
Lyapunov Inequality
P-Laplace Operator
Sobolev Spaces
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55543

id CONICETDig_db667895fc064674138debf4006e4921
oai_identifier_str oai:ri.conicet.gov.ar:11336/55543
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Lyapunov-type inequalities for partial differential equationsde Napoli, Pablo LuisPinasco, Juan PabloEigenvalues BoundsLyapunov InequalityP-Laplace OperatorSobolev Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we present a Lyapunov inequality for linear and quasilinear elliptic differential operators in N-dimensional domains Ω. We also consider singular and degenerate elliptic problems with Ap coefficients involving the p-Laplace operator with zero Dirichlet boundary condition.As an application of the inequalities obtained, we derive lower bounds for the first eigenvalue of the p-Laplacian, and compare them with the usual ones in the literature.Fil: de Napoli, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAcademic Press Inc Elsevier Science2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55543de Napoli, Pablo Luis; Pinasco, Juan Pablo; Lyapunov-type inequalities for partial differential equations; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 270; 6; 3-2016; 1995-20180022-1236CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123616000070info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2016.01.006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:23Zoai:ri.conicet.gov.ar:11336/55543instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:23.918CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Lyapunov-type inequalities for partial differential equations
title Lyapunov-type inequalities for partial differential equations
spellingShingle Lyapunov-type inequalities for partial differential equations
de Napoli, Pablo Luis
Eigenvalues Bounds
Lyapunov Inequality
P-Laplace Operator
Sobolev Spaces
title_short Lyapunov-type inequalities for partial differential equations
title_full Lyapunov-type inequalities for partial differential equations
title_fullStr Lyapunov-type inequalities for partial differential equations
title_full_unstemmed Lyapunov-type inequalities for partial differential equations
title_sort Lyapunov-type inequalities for partial differential equations
dc.creator.none.fl_str_mv de Napoli, Pablo Luis
Pinasco, Juan Pablo
author de Napoli, Pablo Luis
author_facet de Napoli, Pablo Luis
Pinasco, Juan Pablo
author_role author
author2 Pinasco, Juan Pablo
author2_role author
dc.subject.none.fl_str_mv Eigenvalues Bounds
Lyapunov Inequality
P-Laplace Operator
Sobolev Spaces
topic Eigenvalues Bounds
Lyapunov Inequality
P-Laplace Operator
Sobolev Spaces
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we present a Lyapunov inequality for linear and quasilinear elliptic differential operators in N-dimensional domains Ω. We also consider singular and degenerate elliptic problems with Ap coefficients involving the p-Laplace operator with zero Dirichlet boundary condition.As an application of the inequalities obtained, we derive lower bounds for the first eigenvalue of the p-Laplacian, and compare them with the usual ones in the literature.
Fil: de Napoli, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description In this work we present a Lyapunov inequality for linear and quasilinear elliptic differential operators in N-dimensional domains Ω. We also consider singular and degenerate elliptic problems with Ap coefficients involving the p-Laplace operator with zero Dirichlet boundary condition.As an application of the inequalities obtained, we derive lower bounds for the first eigenvalue of the p-Laplacian, and compare them with the usual ones in the literature.
publishDate 2016
dc.date.none.fl_str_mv 2016-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55543
de Napoli, Pablo Luis; Pinasco, Juan Pablo; Lyapunov-type inequalities for partial differential equations; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 270; 6; 3-2016; 1995-2018
0022-1236
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55543
identifier_str_mv de Napoli, Pablo Luis; Pinasco, Juan Pablo; Lyapunov-type inequalities for partial differential equations; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 270; 6; 3-2016; 1995-2018
0022-1236
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123616000070
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2016.01.006
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614456459395072
score 13.070432