Lyapunov-type inequalities for partial differential equations
- Autores
- de Napoli, Pablo Luis; Pinasco, Juan Pablo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we present a Lyapunov inequality for linear and quasilinear elliptic differential operators in N-dimensional domains Ω. We also consider singular and degenerate elliptic problems with Ap coefficients involving the p-Laplace operator with zero Dirichlet boundary condition.As an application of the inequalities obtained, we derive lower bounds for the first eigenvalue of the p-Laplacian, and compare them with the usual ones in the literature.
Fil: de Napoli, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Eigenvalues Bounds
Lyapunov Inequality
P-Laplace Operator
Sobolev Spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55543
Ver los metadatos del registro completo
id |
CONICETDig_db667895fc064674138debf4006e4921 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55543 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Lyapunov-type inequalities for partial differential equationsde Napoli, Pablo LuisPinasco, Juan PabloEigenvalues BoundsLyapunov InequalityP-Laplace OperatorSobolev Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we present a Lyapunov inequality for linear and quasilinear elliptic differential operators in N-dimensional domains Ω. We also consider singular and degenerate elliptic problems with Ap coefficients involving the p-Laplace operator with zero Dirichlet boundary condition.As an application of the inequalities obtained, we derive lower bounds for the first eigenvalue of the p-Laplacian, and compare them with the usual ones in the literature.Fil: de Napoli, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAcademic Press Inc Elsevier Science2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55543de Napoli, Pablo Luis; Pinasco, Juan Pablo; Lyapunov-type inequalities for partial differential equations; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 270; 6; 3-2016; 1995-20180022-1236CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123616000070info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2016.01.006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:23Zoai:ri.conicet.gov.ar:11336/55543instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:23.918CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Lyapunov-type inequalities for partial differential equations |
title |
Lyapunov-type inequalities for partial differential equations |
spellingShingle |
Lyapunov-type inequalities for partial differential equations de Napoli, Pablo Luis Eigenvalues Bounds Lyapunov Inequality P-Laplace Operator Sobolev Spaces |
title_short |
Lyapunov-type inequalities for partial differential equations |
title_full |
Lyapunov-type inequalities for partial differential equations |
title_fullStr |
Lyapunov-type inequalities for partial differential equations |
title_full_unstemmed |
Lyapunov-type inequalities for partial differential equations |
title_sort |
Lyapunov-type inequalities for partial differential equations |
dc.creator.none.fl_str_mv |
de Napoli, Pablo Luis Pinasco, Juan Pablo |
author |
de Napoli, Pablo Luis |
author_facet |
de Napoli, Pablo Luis Pinasco, Juan Pablo |
author_role |
author |
author2 |
Pinasco, Juan Pablo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Eigenvalues Bounds Lyapunov Inequality P-Laplace Operator Sobolev Spaces |
topic |
Eigenvalues Bounds Lyapunov Inequality P-Laplace Operator Sobolev Spaces |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we present a Lyapunov inequality for linear and quasilinear elliptic differential operators in N-dimensional domains Ω. We also consider singular and degenerate elliptic problems with Ap coefficients involving the p-Laplace operator with zero Dirichlet boundary condition.As an application of the inequalities obtained, we derive lower bounds for the first eigenvalue of the p-Laplacian, and compare them with the usual ones in the literature. Fil: de Napoli, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In this work we present a Lyapunov inequality for linear and quasilinear elliptic differential operators in N-dimensional domains Ω. We also consider singular and degenerate elliptic problems with Ap coefficients involving the p-Laplace operator with zero Dirichlet boundary condition.As an application of the inequalities obtained, we derive lower bounds for the first eigenvalue of the p-Laplacian, and compare them with the usual ones in the literature. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55543 de Napoli, Pablo Luis; Pinasco, Juan Pablo; Lyapunov-type inequalities for partial differential equations; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 270; 6; 3-2016; 1995-2018 0022-1236 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55543 |
identifier_str_mv |
de Napoli, Pablo Luis; Pinasco, Juan Pablo; Lyapunov-type inequalities for partial differential equations; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 270; 6; 3-2016; 1995-2018 0022-1236 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123616000070 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2016.01.006 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614456459395072 |
score |
13.070432 |