A lyapunov type inequality for indefinite weights and eigenvalue homogenization
- Autores
- Salort, Ariel Martin; Fernandez Bonder, Julian; Pinasco, Juan Pablo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights.
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina - Materia
-
EIGENVALUES
HOMOGENIZATION
LYAPUNOV’S INEQUALITY
P-LAPLACIAN - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55420
Ver los metadatos del registro completo
id |
CONICETDig_ef49596eca51301156ff8232e62d20c6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55420 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A lyapunov type inequality for indefinite weights and eigenvalue homogenizationSalort, Ariel MartinFernandez Bonder, JulianPinasco, Juan PabloEIGENVALUESHOMOGENIZATIONLYAPUNOV’S INEQUALITYP-LAPLACIANhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights.Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaAmerican Mathematical Society2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55420Salort, Ariel Martin; Fernandez Bonder, Julian; Pinasco, Juan Pablo; A lyapunov type inequality for indefinite weights and eigenvalue homogenization; American Mathematical Society; Proceedings of the American Mathematical Society; 144; 4; 4-2016; 1669-16800002-9939CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2016-144-04/S0002-9939-2015-12871-7/info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/12871info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:45:23Zoai:ri.conicet.gov.ar:11336/55420instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:45:23.492CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
title |
A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
spellingShingle |
A lyapunov type inequality for indefinite weights and eigenvalue homogenization Salort, Ariel Martin EIGENVALUES HOMOGENIZATION LYAPUNOV’S INEQUALITY P-LAPLACIAN |
title_short |
A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
title_full |
A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
title_fullStr |
A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
title_full_unstemmed |
A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
title_sort |
A lyapunov type inequality for indefinite weights and eigenvalue homogenization |
dc.creator.none.fl_str_mv |
Salort, Ariel Martin Fernandez Bonder, Julian Pinasco, Juan Pablo |
author |
Salort, Ariel Martin |
author_facet |
Salort, Ariel Martin Fernandez Bonder, Julian Pinasco, Juan Pablo |
author_role |
author |
author2 |
Fernandez Bonder, Julian Pinasco, Juan Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
EIGENVALUES HOMOGENIZATION LYAPUNOV’S INEQUALITY P-LAPLACIAN |
topic |
EIGENVALUES HOMOGENIZATION LYAPUNOV’S INEQUALITY P-LAPLACIAN |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights. Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina |
description |
In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55420 Salort, Ariel Martin; Fernandez Bonder, Julian; Pinasco, Juan Pablo; A lyapunov type inequality for indefinite weights and eigenvalue homogenization; American Mathematical Society; Proceedings of the American Mathematical Society; 144; 4; 4-2016; 1669-1680 0002-9939 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55420 |
identifier_str_mv |
Salort, Ariel Martin; Fernandez Bonder, Julian; Pinasco, Juan Pablo; A lyapunov type inequality for indefinite weights and eigenvalue homogenization; American Mathematical Society; Proceedings of the American Mathematical Society; 144; 4; 4-2016; 1669-1680 0002-9939 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2016-144-04/S0002-9939-2015-12871-7/ info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/12871 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614493612539904 |
score |
13.070432 |