A lyapunov type inequality for indefinite weights and eigenvalue homogenization

Autores
Salort, Ariel Martin; Fernandez Bonder, Julian; Pinasco, Juan Pablo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights.
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Materia
EIGENVALUES
HOMOGENIZATION
LYAPUNOV’S INEQUALITY
P-LAPLACIAN
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55420

id CONICETDig_ef49596eca51301156ff8232e62d20c6
oai_identifier_str oai:ri.conicet.gov.ar:11336/55420
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A lyapunov type inequality for indefinite weights and eigenvalue homogenizationSalort, Ariel MartinFernandez Bonder, JulianPinasco, Juan PabloEIGENVALUESHOMOGENIZATIONLYAPUNOV’S INEQUALITYP-LAPLACIANhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights.Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaAmerican Mathematical Society2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55420Salort, Ariel Martin; Fernandez Bonder, Julian; Pinasco, Juan Pablo; A lyapunov type inequality for indefinite weights and eigenvalue homogenization; American Mathematical Society; Proceedings of the American Mathematical Society; 144; 4; 4-2016; 1669-16800002-9939CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2016-144-04/S0002-9939-2015-12871-7/info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/12871info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:45:23Zoai:ri.conicet.gov.ar:11336/55420instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:45:23.492CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A lyapunov type inequality for indefinite weights and eigenvalue homogenization
title A lyapunov type inequality for indefinite weights and eigenvalue homogenization
spellingShingle A lyapunov type inequality for indefinite weights and eigenvalue homogenization
Salort, Ariel Martin
EIGENVALUES
HOMOGENIZATION
LYAPUNOV’S INEQUALITY
P-LAPLACIAN
title_short A lyapunov type inequality for indefinite weights and eigenvalue homogenization
title_full A lyapunov type inequality for indefinite weights and eigenvalue homogenization
title_fullStr A lyapunov type inequality for indefinite weights and eigenvalue homogenization
title_full_unstemmed A lyapunov type inequality for indefinite weights and eigenvalue homogenization
title_sort A lyapunov type inequality for indefinite weights and eigenvalue homogenization
dc.creator.none.fl_str_mv Salort, Ariel Martin
Fernandez Bonder, Julian
Pinasco, Juan Pablo
author Salort, Ariel Martin
author_facet Salort, Ariel Martin
Fernandez Bonder, Julian
Pinasco, Juan Pablo
author_role author
author2 Fernandez Bonder, Julian
Pinasco, Juan Pablo
author2_role author
author
dc.subject.none.fl_str_mv EIGENVALUES
HOMOGENIZATION
LYAPUNOV’S INEQUALITY
P-LAPLACIAN
topic EIGENVALUES
HOMOGENIZATION
LYAPUNOV’S INEQUALITY
P-LAPLACIAN
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights.
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
description In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights.
publishDate 2016
dc.date.none.fl_str_mv 2016-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55420
Salort, Ariel Martin; Fernandez Bonder, Julian; Pinasco, Juan Pablo; A lyapunov type inequality for indefinite weights and eigenvalue homogenization; American Mathematical Society; Proceedings of the American Mathematical Society; 144; 4; 4-2016; 1669-1680
0002-9939
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55420
identifier_str_mv Salort, Ariel Martin; Fernandez Bonder, Julian; Pinasco, Juan Pablo; A lyapunov type inequality for indefinite weights and eigenvalue homogenization; American Mathematical Society; Proceedings of the American Mathematical Society; 144; 4; 4-2016; 1669-1680
0002-9939
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2016-144-04/S0002-9939-2015-12871-7/
info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/12871
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614493612539904
score 13.070432